Open Access

This article has an erratum: [https://doi.org/10.1186/s41476-021-00146-x]


Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 14
Number of page(s) 10
DOI https://doi.org/10.1186/s41476-020-00136-5
Published online 16 June 2020
  1. Ferry VE, Munday JN, Atwater HA, Design considerations for plasmonic photovoltaics. Adv. Mater. (2010) 22, 4794–4808. [NASA ADS] [CrossRef] [Google Scholar]
  2. Pala RA, White J, Barnard E, Liu J, Brongersma ML, Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. (2009) 21, 3504–3509. [NASA ADS] [CrossRef] [Google Scholar]
  3. Zhou D, Biswas R, Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys. (2008) 103, [Google Scholar]
  4. Atwater HA, Polman A, Plasmonics for improved photovoltaic devices. Nat. Mater. (2010) 9, 205–213. [CrossRef] [PubMed] [Google Scholar]
  5. Pillai S, Green M, Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells (2010) 94, 1481–1486. [Google Scholar]
  6. Redfield D, Multiple-pass thin-film silicon solar cell. Appl. Phys. Lett. (1974) 25, 647–648. [NASA ADS] [CrossRef] [Google Scholar]
  7. Yablonovitch E, Statistical ray optics. JOSA (1982) 72, 899–907. [NASA ADS] [CrossRef] [Google Scholar]
  8. Ou Q, Zhang Y, Wang Z, Yuwono JA, Wang R, Dai Z, et al.Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. (2018) 30, 1705792. [NASA ADS] [CrossRef] [Google Scholar]
  9. Chen K, Jin W, Zhang Y, Yang T, Reiss P, Zhong Q, et al.High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. (2020) 142, 3775–3783. [CrossRef] [Google Scholar]
  10. Chen K, Zhong Q, Chen W, Sang B, Wang Y, Yang T, et al.Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. (2019) 29, 1900991. [CrossRef] [Google Scholar]
  11. Biswas R, Xu C, Nano-crystalline silicon solar cell architecture with absorption at the classical 4n 2 limit. Opt. Express (2011) 19, A664–A672. [NASA ADS] [CrossRef] [Google Scholar]
  12. Munday JN, Atwater HA, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett. (2010) 11, 2195–2201. [Google Scholar]
  13. Kim S-S, Na S-I, Jo J, Kim D-Y, Nah Y-C, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. (2008) 93, 305. [Google Scholar]
  14. Catchpole K, Polman A, Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. (2008) 93, 191113. [NASA ADS] [CrossRef] [Google Scholar]
  15. Standridge SD, Schatz GC, Hupp JT, Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir (2009) 25, 2596–2600. [Google Scholar]
  16. Moreno F, García-Cámara B, Saiz J, González F, Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Opt. Express (2008) 16, 12487–12504. [NASA ADS] [CrossRef] [Google Scholar]
  17. Heydari M, Sabaeian M, Plasmonic nanogratings on MIM and SOI thin-film solar cells: comparison and optimization of optical and electric enhancements. Appl. Opt. (2017) 56, 1917–1924. [NASA ADS] [CrossRef] [Google Scholar]
  18. Sabaeian M, Heydari M, Ajamgard N, Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section. AIP Adv. (2015) 5, [Google Scholar]
  19. Zhang, Y., Lim, C.-K., Dai, Z., Yu, G., Haus, J.W., Zhang, H., et al.: Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 795,1-51(2019) [Google Scholar]
  20. Gao T, Stevens E, Lee J-k, Leu PW, Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. Opt. Lett. (2014) 39, 4647–4650. [NASA ADS] [CrossRef] [Google Scholar]
  21. Karatay DU, Salvador M, Yao K, Jen AK-Y, Ginger DS, Performance limits of plasmon-enhanced organic photovoltaics. Appl. Phys. Lett. (2014) 105, 109–101. [Google Scholar]
  22. Pillai S, Catchpole K, Trupke T, Green M, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. (2007) 101, [Google Scholar]
  23. Lin M-Y, Kang YL, Chen Y-C, Tsai T-H, Lin S-C, Huang Y-H, et al.Plasmonic ITO-free polymer solar cell. Opt. Express (2014) 22, A438–A445. [NASA ADS] [CrossRef] [Google Scholar]
  24. Lee S, Mason DR, In S, Park N, Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance. Opt. Express (2014) 22, A1145–A1152. [NASA ADS] [CrossRef] [Google Scholar]
  25. Hsiao H-H, Chang H-C, Wu Y-R, Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling. Appl. Phys. Lett. (2014) 105, [Google Scholar]
  26. Zhang Y, Jia B, Ouyang Z, Gu M, Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. J. Appl. Phys. (2014) 116, 124303. [NASA ADS] [CrossRef] [Google Scholar]
  27. Morawiec S, Mendes MJ, Filonovich SA, Mateus T, Mirabella S, Águas H, et al.Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express (2014) 22, A1059–A1070. [Google Scholar]
  28. You J, Li X, Xie FX, Sha WE, Kwong JH, Li G, et al.Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Adv. Energy Mater. (2012) 2, 1203–1207. [CrossRef] [Google Scholar]
  29. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A, Searching for better plasmonic materials. Laser Photonics Rev. (2010) 4, 795–808. [NASA ADS] [CrossRef] [Google Scholar]
  30. Heidari M, Sabaeian M, Ajamgard N, The influence of silver nanopyramids on the optical absorption in the plasmonic organic photovoltaic cells. J. Res. Many-body Syst. (2016) 6, 63–70. [Google Scholar]
  31. Johnson PB, Christy R-W, Optical constants of the noble metals. Phys. Rev. B (1972) 6, 4370. [CrossRef] [Google Scholar]
  32. Pei J, Yang J, Yildirim T, Zhang H, Lu Y, Many-body complexes in 2D semiconductors. Adv. Mater. (2019) 31, 1706945. [NASA ADS] [CrossRef] [Google Scholar]
  33. Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H, 2D V-V binary materials: status and challenges. Adv. Mater. (2019) 31, 1902352. [CrossRef] [Google Scholar]
  34. He J, Tao L, Zhang H, Zhou B, Li J, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale (2019) 11, 2577–2593. [Google Scholar]
  35. Shalaev, V.M.: Transforming light. Science. 322(5900),384–386 (2008) [Google Scholar]
  36. Vakil A, Engheta N, Transformation optics using graphene. Science (2011) 332, 1291–1294. [NASA ADS] [CrossRef] [Google Scholar]
  37. Jablan M, Buljan H, Soljačić M, Plasmonics in graphene at infrared frequencies. Phys. Rev. B (2009) 80, 245435. [CrossRef] [Google Scholar]
  38. Koppens FH, Chang DE, García de Abajo FJ, Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. (2011) 11, 3370–3377. [NASA ADS] [CrossRef] [Google Scholar]
  39. Hajati Y, Zanbouri Z, Sabaeian M, Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide. JOSA B (2018) 35, 446–453. [NASA ADS] [CrossRef] [Google Scholar]
  40. Hajati Y, Zanbouri Z, Sabaeian M, Optimizing encapsulated graphene in hexagonal boron nitride toward low propagation loss and enhanced field confinement. JOSA B (2019) 36, 1189–1199. [NASA ADS] [CrossRef] [Google Scholar]
  41. Zhou X, Zhang T, Chen L, Hong W, Li X, A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. (2014) 32, 3597–3601. [NASA ADS] [Google Scholar]
  42. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.Electric field effect in atomically thin carbon films. Science (2004) 306, 666–669. [Google Scholar]
  43. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al.Two-dimensional gas of massless Dirac fermions in graphene. Nature (2005) 438, 197–200. [Google Scholar]
  44. Geim AK, Novoselov KS, The rise of graphene. Nat. Mater. (2007) 6, 183–191. [CrossRef] [PubMed] [Google Scholar]
  45. Bonaccorso F, Sun Z, Hasan T, Ferrari A, Graphene photonics and optoelectronics. Nat. Photonics (2010) 4, 611–622. [NASA ADS] [CrossRef] [Google Scholar]
  46. Avouris P, Graphene: electronic and photonic properties and devices. Nano Lett. (2010) 10, 4285–4294. [NASA ADS] [CrossRef] [Google Scholar]
  47. Avouris P, Freitag M, Graphene photonics, plasmonics, and optoelectronics. IEEE J. Selected Topics Quantum Electron. (2014) 20, 72–83. [NASA ADS] [CrossRef] [Google Scholar]
  48. Garcia de Abajo FJ, Graphene plasmonics: challenges and opportunities. Acs Photonics (2014) 1, 135–152. [CrossRef] [Google Scholar]
  49. Hanson GW, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. (2008) 103, [Google Scholar]
  50. Hajati M, Hajati Y, Dynamic tuning of mid-infrared plasmons in graphene–buffer–SiO 2–Si nanostructures. JOSA B (2016) 33, 1303–1310. [NASA ADS] [CrossRef] [Google Scholar]
  51. Hajati M, Hajati Y, High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate. JOSA B (2016) 33, 2560–2565. [NASA ADS] [CrossRef] [Google Scholar]
  52. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, García de Abajo FJ, Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano (2011) 6, 431–440. [Google Scholar]
  53. Patel K, Tyagi PK, Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. (2015) 5, [Google Scholar]
  54. Aspnes DE, Studna A, Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Phys. Rev. B (1983) 27, 985. [Google Scholar]
  55. Nikitin AY, Guinea F, García-Vidal F, Martín-Moreno L, Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B (2011) 84, 161407. [NASA ADS] [CrossRef] [Google Scholar]
  56. Francescato Y, Giannini V, Maier SA, Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. (2013) 15, [Google Scholar]
  57. Yariv A, Introduction to Optical Electronics (1976) [Google Scholar]
  58. Lasnier, F.: Photovoltaic Engineering Handbook. CRC Press (1990) [Google Scholar]
  59. Liang J, Bi H, Wan D, Huang F, Novel Cu nanowires/graphene as the back contact for CdTe solar cells. Adv. Funct. Mater. (2012) 22, 1267–1271. [CrossRef] [Google Scholar]
  60. Shi Z, Jayatissa AH, The impact of graphene on the fabrication of thin film solar cells: current status and future prospects. Materials (2018) 11, 36. [Google Scholar]
  61. Bi H, Huang F, Liang J, Tang Y, Lü X, Xie X, et al.Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. J. Mater. Chem. (2011) 21, 17366–17370. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.