Open Access
Review
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1186/s41476-020-00133-8 | |
Published online | 29 June 2020 |
- Powell RL, Stetson KA, Interferometric vibration analysis by Wavefront reconstruction. J. Opt. Soc. Am. (1965) 55, 1593–1598. [NASA ADS] [CrossRef] [Google Scholar]
- Goodman JW, Lawrence RW, Digital image formation from electronically detected holograms. Appl. Phys. Lett. (1967) 11, 77–79. [CrossRef] [Google Scholar]
- Lesem LB, Hirsch PM, Jordan JA, Scientific applications: computer synthesis of holograms for 3-D display. Commun. ACM (1968) 11, 661–674. [CrossRef] [Google Scholar]
- Brown BR, Lohmann AW, Complex spatial filtering with binary masks. Appl. Optics (1966) 5, 967–969. [NASA ADS] [CrossRef] [Google Scholar]
- Heflinger LO, Wuerker RF, Brooks RE, Holographic interferometry. J. Appl. Phys. (1966) 37, 642–649. [CrossRef] [Google Scholar]
- Schnars U, Direct phase determination in hologram interferometry with use of digitally recorded holograms. JOSA A. (1994) 11, 2011–2015. [NASA ADS] [CrossRef] [Google Scholar]
- Schnars U, Kreis TM, Jueptner WP, Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum. Optim. Eng. (1996) 35, 977–982. [NASA ADS] [CrossRef] [Google Scholar]
- Schnars U, Juptner W, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Optics (1994) 33, 2179–181. [NASA ADS] [CrossRef] [Google Scholar]
- Takeda M, Ina HI, Kobayashi S, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA (1982) 72, 156–160. [NASA ADS] [CrossRef] [Google Scholar]
- Mendoza Santoyo F, Kerr D, Tyrer JR, Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process. J. Mod. Opt. (1989) 36, 195–204. [NASA ADS] [CrossRef] [Google Scholar]
- Yamaguchi I, Fringe formation in speckle photography. JOSA (1984) A1, 81–86. [NASA ADS] [CrossRef] [Google Scholar]
- Boone, P.M.: NDT techniques: laser-based. In: Jürgen Buschow, K.H., Cahn Robert, W., Flemings Merton, C., Bernhard, I., Kramer Edward, J., Mahajan, S., Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, pp. 6018–6021. Elsevier, Amsterdam (2001) [Google Scholar]
- Vest C, M: Holographic Interferometry (1979) New YorkWiley [Google Scholar]
- Sharpe, W.N.: Springer Handbook of Experimental Solid Mechanics. Springer-Verlag, New York (2008) [Google Scholar]
- Uribe LU, Hernández-Montes MS, Mendoza SF, Fully automated digital holographic interferometer for 360 deg contour and displacement measurements. Optim. Eng. (2016) 55, 12121719. [NASA ADS] [CrossRef] [Google Scholar]
- Hariharan P, Oreb B, Stroboscopic holographic interferometry: application of digital techniques. Opt. Commun. (1986) 59, 283–86. [NASA ADS] [CrossRef] [Google Scholar]
- Pedrini G, Gusev M, Schedin S, Tiziani H, Pulsed digital holographic interferometry by using a flexible fiber endoscope. Opt. Lasers Eng. (2003) 40, 5–6487–499. [NASA ADS] [CrossRef] [Google Scholar]
- Pedrini G, Schedin S, Alexeenko I, Tiziani H, Hoefling P, Jueptner WPO, Kujawinska M, Use of endoscopes in pulsed digital holographic interferometry. Proceeding of SPIE 4399 (2001) 1–8. [Google Scholar]
- Ferraro P, De Nicola S, Finizio A, Grilli S, Pierattini G, Hoefling R, Jueptner WP, Kujawinska M, Digital holographic interferometry for characterization of transparent materials. Proceedings of SPIE 4399 (2001) 9–16. [NASA ADS] [CrossRef] [Google Scholar]
- Owen R, Zozulya A, Comparative study with double-exposure digital holographic interferometry and a shack–Hartmann sensor to characterize transparent materials. Appl. Optics (2002) 41, 285891–5895. [NASA ADS] [CrossRef] [Google Scholar]
- De la Torre I, Manuel H, Mendoza Santoyo F, Hernandez MMS, Transmission out-of-plane interferometer to study thermal distributions in liquids. Opt. Lett. (2018) 43, 871–874. [CrossRef] [Google Scholar]
- Agarwal S, Kumar M, Kumar V, Shakher C, Mendoza Santoyo FR, Mendez E, Analysis of alcohol-water diffusion process using digital holographic interferometry. Proceedings of SPIE 9660S (2015) [Google Scholar]
- Wang J, Zhao J, Di J, Rauf A, Hao J, Dynamically measuring unstable reaction-diffusion process by using digital holographic interferometry. Opt. Lasers Eng. (2014) 57, 1–5. [NASA ADS] [CrossRef] [Google Scholar]
- Wylock C, Dehaeck S, Cartage T, Colinet P, Haut B, Experimental study of gas-liquid mass transfer coupled with chemical reactions by digital holographic interferometry. Chem. Eng. Sci. (2011) 66, 143400–3412. [CrossRef] [Google Scholar]
- De la Torre-Ibarra MH, Mendoza Santoyo F, Interferometric study on birds’ feathers. J. Biomed. Opt. (2013) 18, 51–9. [Google Scholar]
- Aguayo D, Mendoza Santoyo F, De la Torre-I MH, Salas-Araiza MD, Caloca-Mendez C, Gutierrez Hernandez DA, Insect wing deformation measurements using high speed digital holographic interferometry. Opt. Express (2010) 18, 5661–5667. [NASA ADS] [CrossRef] [Google Scholar]
- Aguayo D, Santoyo FM, De la Torre Ibarra M, Mendez CC, Salas-Araiza MD, Comparison on different insects' wing displacements using high speed digital holographic interferometry. J. Biomed. Opt. (2011) 16, 1–9. [CrossRef] [Google Scholar]
- Silva AL, Hernández M, del Socorro Mendoza Santoyo M, De la Torre IMH, Flores Moreno JM, Frausto R, et al.Study of skin rigidity variations due to UV radiation using digital holographic interferometry. Opt. Lasers Eng. (2020) 126, 105909. [NASA ADS] [CrossRef] [Google Scholar]
- Zak M, Kuropka P, Kobielarz M, Dudek A, Kaleta-Kuratewicz K, Szotek S, Determination of the mechanical properties of the skin of pig foetuses with respect to its structure. Acta Bioeng. Biomech. (2011) 13, 37–43. [Google Scholar]
- Agache PG, Monneur C, Leveque JL, De Rigal J, Mechanical properties and young’s modulus of human skin in vivo. Arch. Dermatol. Res. (1980) 269, 221–232. [CrossRef] [Google Scholar]
- Li C, Guan G, Reif R, Huang Z, Wang RK, Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface (2012) 9, 831–841. [CrossRef] [Google Scholar]
- Imokawa G, Ishida K, Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci. (2015) 16, 7753–7775. [CrossRef] [Google Scholar]
- Takema Y, Yorimoto Y, Kawai M, Imokawa G, Age-related changes in the elastic properties and thickness of human facial skin. Br. J. Dermatol. (1994) 131, 641–648. [CrossRef] [Google Scholar]
- Tilleman T, Tilleman M, Neumann M, The elastic properties of cancerous skin: Poisson's ratio and Young's modulus. IMAJ. (2004) 6, 753–755. [Google Scholar]
- Tonndorf J, Khanna SM, Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J. Acoust. Soc. Am. (1972) 52, 1221–1233. [NASA ADS] [CrossRef] [Google Scholar]
- Decraemer WF, Khanna SM, Funnell WRJ, Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat. Hear. Res. (1989) 38, 1–17. [CrossRef] [Google Scholar]
- Cheng JT, Aarnisalo AA, Harrington E, del Hernandez-Montes MS, Furlong C, Merchant SN, et al.Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear. Res. (2010) 263, 66–77. [CrossRef] [Google Scholar]
- Hernández-Montes, M. del S., Furlong, C., Rosowski, J.J., Hulli, N., et al.: Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J. Biomed. Opt. 14(3), 034023 (2009) [Google Scholar]
- Flores-Moreno JM, Furlong C, Cheng JT, Rosowski JJ, Merchant SN, Rodríguez-Vera R, Díaz-Uribe R, Characterization of acoustically induced deformations of human tympanic membranes by digital holography and shearography. Proceedings of SPIE 80118C-80118C – 10 (2011) [Google Scholar]
- Cheng JT, Hamade M, Merchant SN, Rosowski JJ, Harrington E, Furlong C, Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J. Acoust. Soc. Am. (2013) 133, 918–937. [NASA ADS] [CrossRef] [Google Scholar]
- Flores-Moreno JM, Mendoza Santoyo F, Estrada Rico JC, Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements. Appl. Optics (2013) 52, 1731–1742. [NASA ADS] [CrossRef] [Google Scholar]
- Rosowski JJ, Dobrev I, Khaleghi M, Lu W, Cheng JT, Harrington E, et al.Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane. Hear. Res. (2013) 301, 44–52. [CrossRef] [Google Scholar]
- Khaleghi M, Furlong C, Ravicz M, Cheng JT, Rosowski JJ, Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography. J. Biomed. Opt. (2015) 20, [Google Scholar]
- Razavi P, Dobrev I, Ravicz ME, Cheng JT, Furlong C, Rosowski JJ, Transient response of the eardrum excited by localized mechanical forces. Mech. Biol. Syst. Mater. (2016) 6, 31–37. [Google Scholar]
- Pedrini G, Osten W, Gusev ME, High-speed digital holographic interferometry for vibration measurement. Appl. Optics (2006) 45, 3456. [NASA ADS] [CrossRef] [Google Scholar]
- Solís SM, del Hernández-Montes MS, Santoyo FM, Measurement of Young’s modulus in an elastic material using 3D digital holographic interferometry. Appl. Optics (2011) 50, 3383–3388. [CrossRef] [Google Scholar]
- Flores-Moreno JM, Furlong C, Rosowski JJ, Harrington E, Cheng JT, Scarpino C, et al.Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation. Scanning (2011) 33, 342–352. [CrossRef] [Google Scholar]
- Hernandez-Montes M, Mendoza Santoyo F, Muñoz S, Perez C, De La Torre M, Flores M, Alvarez L, Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry. Opt. Lasers Eng. (2015) 71, 42–50. [NASA ADS] [CrossRef] [Google Scholar]
- Hernández-Montes M, Mendoza Santoyo F, Pérez López C, Muñoz Solís S, Esquivel J, Digital holographic interferometry applied to the study of tympanic membrane displacements. Opt. Lasers Eng. (2011) 49, 698–702. [CrossRef] [Google Scholar]
- Trillo C, Doval AF, Hernández-Montes S, Deán-Ben XL, López-Vázquez JC, Fernández JL, Pulsed TV holography measurement and digital reconstruction of compression acoustic wave fields: application to nondestructive testing of thick metallic samples. Meas. Sci. Technol. (2011) 22, [Google Scholar]
- M. Solís S, del Hernández-Montes MS, M. Santoyo F, Tympanic membrane contour measurement with two source positions in digital holographic interferometry. Biomed. Opt. Express (2012) 3, 3203–3210. [CrossRef] [Google Scholar]
- Solís S, Santoyo F, del Hernández-Montes MS, 3D displacement measurements of the tympanic membrane with digital holographic interferometry. Opt. Express (2012) 20, 55613–5621. [CrossRef] [Google Scholar]
- Santiago-Lona C, del Hernández-Montes MS, F. Moreno M, Piazza V, De La Torre M, Pérez-López C, Mendoza-Santoyo F, Sierra A, Esquivel J, Tympanic membrane displacement and thickness data correlation using digital holographic interferometry and confocal laser scanning microscopy. Optim. Eng. (2019) 58, 084106. [NASA ADS] [Google Scholar]
- Kumar A, Gotthelf LN, Small animal ear diseases. Anatomy of the Canine and Feline Ear (2005) St. LouisElsevier Saunders [Google Scholar]
- Hernández-Montes, M. del S., Muñoz, S., De La Torre, M., Flores, M., Pérez, C., Mendoza-Santoyo, F.: Quantification of the vocal folds’ dynamic displacements. J. Phys. D: Appl. Phys. 49, 175401 (1–7) (2016) [Google Scholar]
- Hernández-Montes, M. del S., Muñoz, S., Mendoza, F.: Measurement of vocal folds displacements using high-speed digital holographic interferometry. LAOP Technical Digest LTu4A. 28, (2014) [Google Scholar]
- Pedrini G, Alexeenko I, Zaslansky P, Tiziani HJ, Osten W, Digital holographic interferometry for investigations in biomechanics. Proc. SPIE (2005) 5776, 325–332. [Google Scholar]
- Dirksen D, Droste H, Kemper B, Deleré H, Deiwick M, Scheld H, Von Bally G, Lensless Fourier holography for digital holographic interferometry on biological samples. Opt. Lasers Eng. (2001) 36, 241–249. [NASA ADS] [CrossRef] [Google Scholar]
- Akhmetshin AM, High sensitive multiresolution analysis of low-contrast radiologic images based on the digital pseudo coherent holographic interferometry method. J. Digit. Imaging (1999) 12, 2 SUPPL. 1197–198. [CrossRef] [Google Scholar]
- Belashov AV, Belyaeva TN, Kornilova ES, Petrov NV, Salova AV, Semenova IV, Vasyutinskii OS, Zhikhoreva AA, Detection of photoinduced transformations in live HeLa cells by means of digital holographic micro-interferometry. Imaging and Appl. Opt. DTh1l.5 (2016) [Google Scholar]
- Kumar M, Singh Birhman A, Kannan S, Shakher C, Measurement of initial displacement of canine and molar in human maxilla under different canine retraction methods using digital holographic interferometry. Optim. Eng. (2018) 57, [Google Scholar]
- Tavera RCG, De La Torre IMH, Flores MJM, Luna HJM, Briones RMJ, Mendoza SF, Park Y, Popescu G, Optical phase analysis in drilled cortical porcine bones using digital holographic interferometry. Proceedings of SPIE (2016) 9718. [Google Scholar]
- Alvarez A, De La Torre Ibarra M, Santoyo F, Anaya T-S, Strain determination in bone sections with simultaneous 3D digital holographic interferometry. Opt. Lasers Eng. (2014) 57, 101–108. [NASA ADS] [CrossRef] [Google Scholar]
- Pantelić D, Grujić D, Vasiljević D, Single-beam, dual-view digital holographic interferometry for biomechanical strain measurements of biological objects. J. Biomed. Opt. (2014) 19, 127005. [CrossRef] [Google Scholar]
- Tavera RCG, De la Torre IMMHH, Flores MJM, Hernandez M, Ma Del S, Mendoza-Santoyo F, Briones RMJ, Sanchez PJ, Surface structural damage study in cortical bone due to medical drilling. Appl. Optics (2017) 56, F179–F188. [NASA ADS] [CrossRef] [Google Scholar]
- Tavera Ruiz CG, De La Torre-Ibarra MH, Flores-Moreno JM, Frausto-Reyes C, Mendoza Santoyo F, Cortical bone quality affectations and their strength impact analysis using holographic interferometry. Biomed. Opt. Express (2018) 9, 4818–4833. [CrossRef] [Google Scholar]
- Frausto-Rea G, De la Torre MH, Flores JM, Silva L, Briones-R M, Mendoza Santoyo F, Micrometric size measurement of biological samples using a simple and non-invasive transmission interferometric set up. Opt. Express (2019) 27, 26251–26263. [NASA ADS] [CrossRef] [Google Scholar]
- Popescu, G.: Quantitative Phase Imaging of Cells and Tissues. McGraw-Hill Biophotonics. McGraw-Hill, New York (2011) [Google Scholar]
- Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. (2005) 30, 468–470. [CrossRef] [PubMed] [Google Scholar]
- Kim MK, Digital Holographic Microscopy, Springer Series in Optical Sciences (2011) New YorkSpringer Science+Business Media [CrossRef] [Google Scholar]
- Bianco V, Miccio L, Memmolo P, Merola F, Mandracchia B, Cacace T, et al.3D imaging in microfluidics: new holographic methods and devices. Microfluidics BioMEMS Med. Microsyst. XVII. Proc SPIE (2019) 10875, 108750U. [Google Scholar]
- Rastogi V, Gadkari R, Agarwal S, Dubey SK, Shakher C, Digital holographic interferometric in vitro imaging of Escherichia coli (E. coli) bacteria. Holography (2019) 11030, 1103011. [NASA ADS] [Google Scholar]
- Barroso Peña Á, Ketelhut S, Heiduschka P, Nettels-Hackert G, Schnekenburger J, Kemper B, Refractive index properties of the retina accessed by multi-wavelength digital holographic microscopy. Proc. SPIE (2019) 10883, 108830X. [Google Scholar]
- Goud BK, Shinde DD, Udupa DV, Krishna CM, Rao KD, Sahoo NK, Low cost digital holographic microscope for 3-D cell imaging by integrating smartphone and DVD optical head. Opt. Lasers Eng. (2019) 114, 1–6. [NASA ADS] [CrossRef] [Google Scholar]
- Dubey V, Popova D, Ahmad A, Acharya G, Basnet P, Mehta DS, et al.Partially spatially coherent digital holographic microscopy and machine learning for quantitative analysis of human spermatozoa under oxidative stress condition. Sci. Rep. (2019) 9, 3564. [NASA ADS] [CrossRef] [Google Scholar]
- Gabor D, Microscopy by reconstructed wavefronts. Proc. Royal Soc. London Ser. A (1949) 197, 454. [Google Scholar]
- Gabor D, Microscopy by reconstructed wavefronts: II. Proc. Soc. Phys. Soc. B (1951) 64, 449. [Google Scholar]
- Möllenstedt G, And Düker., H.: Beobachtungen und messungen an briprisma-interferenzen mit elektronenwellen. Z. Physik (1956) 145, 377–397. [CrossRef] [Google Scholar]
- Tonomura A, Endo J, Matsuda T, An application of electron holography to interference microscopy. Optik (1979) 53, 143. [Google Scholar]
- Tonomura A, Appication of electron holography using a field-emission electron microscope. J. Electron Microsc. (Tokyo) (1984) 33, 101. [Google Scholar]
- Yatagai T, Ohmura K, Iwasaki S, Hasegawa S, Endo J, Tonomura A, Quantitative phase analysis in electron holographic interferometry. Appl. Optics (1987) 26, 377–382. [NASA ADS] [CrossRef] [Google Scholar]
- Völkl E, Allard LF, Joy DC, Introduction to Electron Holography (1999) New YorkSpringer Science + Business Media [CrossRef] [Google Scholar]
- Hÿtch MJ, et al.Dark-field electron holography for the measurement of geometric phase. Ultramicroscopy (2011) 111, 1328–1337. [CrossRef] [Google Scholar]
- Cantu-Valle J, Ruiz-Zepeda F, Mendoza-Santoyo F, Jose-Yacaman M, Ponce A, Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope. Ultramicroscopy (2014) 147, 44–50. [CrossRef] [Google Scholar]
- Cantu-Valle J, Ruiz-Zepeda F, Voelkl E, Kawasaki M, Jose-Yacaman M, Ponce A, Determination of the surface morphology of gold-decahedra nanoparticles using an off-axis electron holography dual-lens imaging system. Micron. (2013) 54-55, 82–86. [CrossRef] [Google Scholar]
- Ortega E, Cantu-Valle J, Plascencia-Villa G, Vergara S, Mendoza-Santoyo F, Londono-Calderon A, Santiago U, Ponce Pedraza A, Morphology visualization of irregular shape bacteria by electron holography and tomography. Microsc. Res. Tech. (2017) 80, 121249–1255. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.