Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 16, Number 1, 2020
Article Number 4
Number of page(s) 5
DOI https://doi.org/10.1186/s41476-020-0125-0
Published online 07 February 2020
  1. Hänsch TW, Nobel lecture: passion for precision. Rev. Mod. Phys. (2006) 78, 41297–1309. https://doi.org/10.1103/RevModPhys.78.1297 [CrossRef] [Google Scholar]
  2. Hall JL, Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. (2006) 78, 41279–1295. https://doi.org/10.1103/RevModPhys.78.1279 [Google Scholar]
  3. Diddams SA, Kirchner M, Fortier T, Braje D, Weiner AM, Hollberg L, Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Opt. Express (2009) 17, 53331–3340. https://doi.org/10.1364/OE.17.003331 [NASA ADS] [CrossRef] [Google Scholar]
  4. Haboucha A, Zhang W, Li T, Lours M, Luiten AN, Coq YL, Santarelli G, Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. (2011) 36, 183654–3656. https://doi.org/10.1364/OL.36.003654 [NASA ADS] [CrossRef] [Google Scholar]
  5. Gambetta A, Gatti D, Castrillo A, Coluccelli N, Galzerano G, Laporta P, Gianfrani L, Marangoni M, Comb-assisted spectroscopy of CO2 absorption profiles in the near- and mid-infrared regions. Appl. Phys. B Lasers Opt. (2012) 109, 3385–390. https://doi.org/10.1007/s00340-012-4947-3 [NASA ADS] [CrossRef] [Google Scholar]
  6. Fukushima S, Silva CFC, Muramoto Y, Seeds AJ, Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode. J. Light. Technol. (2003) 21, 123043–3051. https://doi.org/10.1109/JLT.2003.822250 [NASA ADS] [CrossRef] [Google Scholar]
  7. Ryu HY, Lee SH, Lee WK, Moon HS, Suh HS, Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb. Opt. Express. (2008) 16, 52867. https://doi.org/10.1364/OE.16.002867 [NASA ADS] [CrossRef] [Google Scholar]
  8. Wu DS, Slavik R, Marra G, Richardson DJ, Direct selection and amplification of individual narrowly spaced optical comb modes via injection locking: design and characterization. J. Light. Technol. (2013) 31, 142287–2295. https://doi.org/10.1109/JLT.2013.2262921 [NASA ADS] [Google Scholar]
  9. Rohde F, Benkler E, Telle HR, High contrast, low noise selection and amplification of an individual optical frequency comb line. Opt. Lett. (2013) 38, 2103. https://doi.org/10.1364/OL.38.000103 [NASA ADS] [CrossRef] [Google Scholar]
  10. Sala T, Gatti D, Gambetta A, Coluccelli N, Galzerano G, Laporta P, Marangoni M, Wide-bandwidth phase lock between a CW laser and a frequency comb based on a feed-forward configuration. Opt. Lett. (2012) 37, 132592–2594. https://doi.org/10.1364/OL.37.002592 [NASA ADS] [CrossRef] [Google Scholar]
  11. Koke S, Anderson A, Frei H, Assion A, Steinmeyer G, Noise performance of a feed-forward scheme for carrier-envelope phase stabilization. Appl. Phys. B Lasers Opt. (2011) 104, 4799–804. https://doi.org/10.1007/s00340-011-4654-5 [NASA ADS] [CrossRef] [Google Scholar]
  12. Zhang Z, Zhang Z, Han H, Wang H, Wang H, Shao X, Shao X, Fang S, Wei Z, Wei Z, Wei Z, Wei Z, Ultra-low-noise carrier-envelope phase stabilization of a Kerr-lens mode-locked Yb:CYA laser frequency comb with a feed-forward method. Opt. Lett. (2019) 44, 225489–5492. https://doi.org/10.1364/OL.44.005489 [NASA ADS] [CrossRef] [Google Scholar]
  13. Lemons R, Lemons R, Liu W, de Fuentes IF, Droste S, Steinmeyer G, Durfee CG, Carbajo S, Carbajo S, Carrier-envelope phase stabilization of an Er:Yb:glass laser via a feed-forward technique. Opt. Lett. (2019) 44, 225610–5613. https://doi.org/10.1364/OL.44.005610 [NASA ADS] [CrossRef] [Google Scholar]
  14. Gatti D, Sala T, Gambetta A, Coluccelli N, Conti GN, Galzerano G, Laporta P, Marangoni M, Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb. Opt. Express (2012) 20, 2224880–24885. https://doi.org/10.1364/OE.20.024880 [NASA ADS] [CrossRef] [Google Scholar]
  15. Shao XD, Han HN, Su YB, Wang HB, Zhang ZY, Fang SB, Chang GQ, Wei ZY, Precision locking CW laser to ultrastable optical frequency comb by feed-forward method. AIP Adv. (2019) 9, 11115003. https://doi.org/10.1063/1.5121860 [NASA ADS] [CrossRef] [Google Scholar]
  16. Telle HR, Steinmeyer G, Dunlop AE, Stenger J, Sutter DH, Keller U, Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B Lasers Opt. (1999) 69, 4327–332. https://doi.org/10.1007/s003400050813 [NASA ADS] [CrossRef] [Google Scholar]
  17. Di Domenico G, Schilt S, Thomann P, Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. (2010) 49, 254801–4807. https://doi.org/10.1364/AO.49.004801 [NASA ADS] [CrossRef] [Google Scholar]
  18. Burkart J, Sala T, Kassi S, Romanini D, Marangoni M, Optical phase cloning by an integrated dual-parallel Mach–Zehnder modulator. Opt. Lett. (2015) 40, 5816–819. https://doi.org/10.1364/OL.40.000816 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.