Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 18
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-019-0114-3
Published online 02 August 2019
  1. Huang H, Gong ZM, Chen XQ, Zhou L, Robotic grinding and polishing for turbine-vane overhaul. J. Mater. Process. Tech. (2002) 127, 2140–145. https://doi.org/10.1016/S0924-0136(02)00114-0 [CrossRef] [Google Scholar]
  2. Walker DD, Beaucamp ATH, Doubrovski V, Dunn C, Evans R, Freeman R, McCavana G, Morton R, Riley D, Simms J, Yu G, Wei X, Commissioning of the first precessions 1.2m CNC polishing machines for large optics. Current developments in lens design and optical engineering VII (2006) https://doi.org/10.1117/12.684091 [Google Scholar]
  3. Walker D, Yu GY, Li HY, Messelink W, Evans R, Beaucamp A, Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface. Opt. Express (2012) 20, 1819787–19798. https://doi.org/10.1364/OE.20.019787 [CrossRef] [Google Scholar]
  4. Sugawara J, Kamiya T, Mikashima B, Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope. Material technologies and applications to optics, structures, components, and sub-systems III (2017) [Google Scholar]
  5. Han SJ, Choi JK, Lee SW, Choi HZ, A study of an ultra-precision CNC polishing system. Key Eng. Mat. (2004) 257-258, 395–400. https://doi.org/10.4028/www.scientific.net/KEM.257-258.395 [Google Scholar]
  6. Martin HM, Allen RG, Burge JH, Davis JM, Davison WB, Johns M, Kim DW, Kingsley JS, Law K, Lutz RD, Strittmatter PA, Su P, Tuell MT, West SC, Zhou P, Production of primary mirror segments for the giant Magellan telescope. Advances in optical and mechanical technologies for telescopes and instrumentation (2014) [Google Scholar]
  7. Oota T, Negishi M, Shinonaga H, Gomi A, Tanaka Y, Akutsu K, Otsuka I, Mochizuki S, Iye M, Yamashita T, High volume production trial of Mirror segments for the thirty meter telescope. Ground-based and airborne telescopes V (2014) [Google Scholar]
  8. Tamkin JM, Milster TD, Effects of structured mid-spatial frequency surface errors on image performance. Appl. Opt. (2010) 49, 336522–6536. https://doi.org/10.1364/AO.49.006522 [NASA ADS] [CrossRef] [Google Scholar]
  9. Achilles K, Uhlendorf K, Ochse D, Tolerancing the impact of mid-spatial frequency surface errors of lenses on distortion and image homogeneity. Optical systems design 2015: optical design and engineering VI (2015) [Google Scholar]
  10. Maksimovic M, Optical tolerancing of structured mid-spatial frequency errors on free-form surfaces using anisotropic radial basis functions. Optical systems design 2015: optical design and engineering VI (2015) [Google Scholar]
  11. Del Hoyo J, Choi H, Burge JH, Kim GH, Kim DW, Experimental power spectral density analysis for mid- to high-spatial frequency surface error control. Appl. Opt. (2017) 56, 185258–5267. https://doi.org/10.1364/AO.56.005258 [NASA ADS] [CrossRef] [Google Scholar]
  12. Dai YF, Shi F, Peng XQ, Li SY, Restraint of mid-spatial frequency error in magneto-rheological finishing (MRF) process by maximum entropy method. Sci. China Ser. E (2009) 52, 103092–3097. https://doi.org/10.1007/s11431-009-0316-9 [NASA ADS] [CrossRef] [Google Scholar]
  13. Yu, G., Li, H., Walker, D.: Removal of mid spatial-frequency features in mirror segments. J. Eur. Opt. Soc.-Rapid. 6, 11044–4 (2011) [Google Scholar]
  14. Nie Xuqing, Li Shengyi, Hu Hao, Li Qi, Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process. Applied Optics (2014) 53, 286332. https://doi.org/10.1364/AO.53.006332 [NASA ADS] [CrossRef] [Google Scholar]
  15. Wang T, Cheng HB, Yang H, Wu WT, Tam HY, Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model. Appl. Opt. (2015) 54, 216433–6440. https://doi.org/10.1364/AO.54.006433 [NASA ADS] [CrossRef] [Google Scholar]
  16. Kim DW, Burge JH, Rigid conformal polishing tool using non-linear visco-elastic effect. Opt. Express (2010) 18, 32242–2257. https://doi.org/10.1364/OE.18.002242 [NASA ADS] [CrossRef] [Google Scholar]
  17. Tuell MT, Burge JH, Anderson B, Aspheric optics: smoothing the ripples with semiflexible tools. Opt. Eng. (2002) 41, 71473–1474. https://doi.org/10.1117/1.1481898 [NASA ADS] [CrossRef] [Google Scholar]
  18. Anderson DS, Angel JRP, Burge JH, Davison WB, Derigne ST, Hille BB, Ketelsen DA, Kittrell WC, Martin HM, Nagel RH, Trebisky TJ, West SC, Young RS, Stressed-lap polishing of 3.5-M F 1.5 and 1.8-M F 1.0 mirrors. Advanced optical manufacturing and testing II (1992) 260–269. https://doi.org/10.1117/12.134867 [NASA ADS] [CrossRef] [Google Scholar]
  19. Kim DW, Park WH, Kim SW, Burge JH, Parametric modeling of edge effects for polishing tool influence functions. Opt. Express (2009) 17, 75656–5665. https://doi.org/10.1364/OE.17.005891 [NASA ADS] [CrossRef] [Google Scholar]
  20. Walker D, Hsing-Yu W, Yu GY, Li HY, Zhang W, Lu CL, Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies. Appl. Opt. (2017) 56, 369925–9931. https://doi.org/10.1364/AO.56.009925 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.