J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 19
Number of page(s) 10
Published online 14 August 2019
  1. Yu H, Han S, Lee J-Y, Kim J, Kim Y, Arbabi A, Shin C, Shi L, Arbabi E, Kamali SM, Lee H-S, Hwang S, Faraon A, Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies. Nano Lett. (2017) 17, 3159–3164. [NASA ADS] [CrossRef] [Google Scholar]
  2. Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras JJ, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F, Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics (2017) 11, 366–371. [NASA ADS] [CrossRef] [Google Scholar]
  3. Williams C, Rughoobur G, Flewitt AJ, Wilkinson TD, Nanostructured plasmonic metapixels. Sci. Rep. (2017) 7, 7745. [Google Scholar]
  4. Li E, Chong X, Ren F, Wang AX, Broadband on-chip near-infrared spectroscopy based on a plasmonic grating filter array. Opt. Lett. (2016) 41, 91913–1916. [CrossRef] [Google Scholar]
  5. Burgos SP, Yokogawa S, Atwater HA, Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor. ACS Nano (2013) 7, 1110038–10047. [CrossRef] [Google Scholar]
  6. Xu T, Wu Y-K, Luo X, Guo LJ, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. (2010) 1, 59. [NASA ADS] [CrossRef] [Google Scholar]
  7. Jubran A, Pulse oximetry. Crit. Care (2015) 19, 272. [CrossRef] [Google Scholar]
  8. Koo H-S, Chen M, Pan P-C, LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology. Thin Solid Films (2006) 515, 869–901. [Google Scholar]
  9. Zhang Q, Huang X-G, Lin X-S, Tao J, Jin X-P, A subwavelength coupler-type MIM optical filter. Opt. Express (2009) 17, 7549–7554. [NASA ADS] [CrossRef] [Google Scholar]
  10. Wang SS, Magnusson R, Theory and applications of guided-mode resonance filters. Appl. Opt. (1993) 32, 2606–2613. [NASA ADS] [CrossRef] [Google Scholar]
  11. Do YS, Park JH, Hwang BY, Lee S-M, Ju B-K, Choi KC, Plasmonic color filter and its fabrication for large-area applications. Adv. Opt. Mater. (2013) 1, 133–138. [CrossRef] [Google Scholar]
  12. Ko F-J, Shieh H-PD, High-efficiency micro-optical color filter for liquid-crystal projection system applications. Opt. Express (2000) 39, 1159–1163. [NASA ADS] [Google Scholar]
  13. Wu Y-KR, Hollowell AE, Zhang C, Guo LJ, Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. (2013) 3, 1194. [NASA ADS] [CrossRef] [Google Scholar]
  14. Yokogawa S, Burgos SP, Atwater HA, Plasmonic color filters for CMOS image sensor applications. Nano Lett. (2012) 12, 4349–4354. [NASA ADS] [CrossRef] [Google Scholar]
  15. Mateus CFR, Huang MCY, Li P, Cunningham BT, Chang-Hasnain CJ, Compact label-free biosensor using VCSEL-based measurement system. IEEE Photon. Technol. Lett. (2004) 6, 1712–1714. [NASA ADS] [CrossRef] [Google Scholar]
  16. Nagasaki Y, Suzuki M, Takahara J, All-dielectric dual-color pixel with subwavelength resolution. Nano Lett. (2017) 17, 7500–7506. [NASA ADS] [CrossRef] [Google Scholar]
  17. Dong Z, Ho J, Yu YF, Fu YH, Paniagua-Dominguez R, Wang S, Kuznetsov AI, Yang JKW, Printing beyond sRGB color Gamut by mimicking silicon nanostructures in free-space. Nano Lett. (2017) 17, 7620–7628. [NASA ADS] [CrossRef] [Google Scholar]
  18. Lee S-Y, Ortega A, A novel approach of image compression in digital cameras with a Bayer color filter array. Image Process. (2001) 3, 482–485. [Google Scholar]
  19. Gather MC, Köhnen A, Falcou A, Becker H, Meerholz K, Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Adv. Funct. Mater. (2007) 17, 191–200. [CrossRef] [Google Scholar]
  20. Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y, Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes. Appl. Phys. Lett. (2011) 98, 093113. [NASA ADS] [CrossRef] [Google Scholar]
  21. Lee H-S, Yoon Y-T, Lee S-S, Kim S-H, Lee K-D, Color filter based on a subwavelength patterned metal grating. Opt. Express (2007) 15, 15457–15463. [NASA ADS] [CrossRef] [Google Scholar]
  22. Li W-D, Chou SY, Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express (2010) 18, 931–937. [NASA ADS] [CrossRef] [Google Scholar]
  23. Si G, Zhao Y, Liu H, Teo S, Zhang M, Huang TJ, Danner AJ, Teng J, Annular aperture array based color filter. Appl. Phys. Lett. (2011) 99, 033105. [NASA ADS] [CrossRef] [Google Scholar]
  24. Wang SS, Magnusson R, Multilayer waveguide-grating filters. Appl. Opt. (1995) 34, 2414–2420. [NASA ADS] [CrossRef] [Google Scholar]
  25. Tan C, Simonen J, Niemi T, Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating. Opt. Commun. (2012) 285, 4381–4386. [NASA ADS] [CrossRef] [Google Scholar]
  26. Park C-S, Shrestha VR, Lee S-S, Kim E-S, Transmissive color switch tapping into a polarization-selective spectral filter. IEEE Photon. Technol. Lett. (2014) 26, 12. [Google Scholar]
  27. Shrestha VR, Park C-S, Lee S-S, Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response. Opt. Express (2014) 22, 3691–3704. [NASA ADS] [CrossRef] [Google Scholar]
  28. Mazulquim DB, Lee KJ, Yoon JW, Muniz LV, Borges B-HV, Neto LG, Magnusson R, Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly. Opt. Express (2014) 22, 30843–30851. [NASA ADS] [CrossRef] [Google Scholar]
  29. Qian L, Zhang D, Tao C, Hong R, Zhuang S, Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching. Opt. Lett. (2016) 41, 982–985. [CrossRef] [Google Scholar]
  30. Shrestha VR, Lee S-S, Kim E-S, Choi D-Y, Polarization-tuned dynamic color filters incorporating a dielectricloaded aluminum nanowire array. Sci. Rep. (2015) 5, 12450. [NASA ADS] [CrossRef] [Google Scholar]
  31. Koirala I, Shrestha VR, Park C-S, Lee S-S, Choi D-Y, Polarization-controlled broad color palette based on an ultrathin one dimensional resonant grating structure. Sci. Rep. (2017) 7, 40073. [Google Scholar]
  32. Nishihara H, Haruna M, Suhara T, Optical integrated circuits (1989) New YorkMcGraw-Hill16. chap. 2 [Google Scholar]
  33. Ikeda K, Saperstein RE, Alic N, Fainman Y, Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express (2008) 16, 12987–12994. [NASA ADS] [CrossRef] [Google Scholar]
  34. Sakat E, Vincent G, Ghenuche P, Bardou N, Collin S, Pardo F, Pelouard J-L, Haïdar R, Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering. Opt. Lett. (2011) 36, 3054–3056. [NASA ADS] [CrossRef] [Google Scholar]
  35. Kaplan AF, Xu T, Guo LJ, High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett. (2011) 99, 143111. [NASA ADS] [CrossRef] [Google Scholar]
  36. Williams C, Bartholomew R, Rughoobur G, Gordon GSD, Flewitt AJ, Wilkinson TD, Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography. Nanotechnology (2016) 27, 485301. [Google Scholar]
  37. Hu R, Liang Y, Qian S, Peng W, Dual-band bandpass filter based on compound metallic grating waveguide structure. Opt. Commun. (2015) 336, 110–115. [NASA ADS] [CrossRef] [Google Scholar]
  38. Baileya TC, Resnickb DJ, Mancinib D, Nordquistb KJ, Dauksherb WJ, Ainleyb E, Talinb A, Gehoskib K, Bakerb JH, Choia BJ, Johnsona S, Colburna M, Meissla M, Sreenivasana SV, Ekerdta JG, Willsona CG, Template fabrication schemes for step and flash imprint lithography. Microelectron. Eng. (2002) 61–62, 461–467. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.