Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1186/s41476-019-0113-4 | |
Published online | 29 July 2019 |
- Dugin A. V., Zel’dovich B. Y., Kundikova N. D., Liberman V. S., Effect of circular polarization on the propagation of light through an optical fiber. JETP Lett. (1991) 53, 4197–199. [NASA ADS] [Google Scholar]
- Dooghin A. V., Kundikova N. D., Liberman V. S., Zeldovich B. Y., Optical Magnus effect. Phys. Rev. A (1992) 45, 118204–8208. https://doi.org/10.1103/PhysRevA.45.8204 [CrossRef] [Google Scholar]
- Liberman V. S., Zel’dovich B. Y., Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A (1992) 46, 85199–5207. https://doi.org/10.1103/PhysRevA.46.5199 [NASA ADS] [CrossRef] [Google Scholar]
- Bliokh K. Y., Rodríguez-Fortuño F. J., Nori F., Zayats A. V., Spin-orbit interactions of light. Nat. Photon. (2015) 9, 12796–808. https://doi.org/10.1038/nphoton.2015.201 [CrossRef] [Google Scholar]
- Abdulkareem S., Kundikova N., Joint effect of polarization and the propagation path of a light beam on its intrinsic structure. Opt. Express (2016) 24, 1719157–19165. https://doi.org/10.1364/OE.24.0191571604.03371 [Google Scholar]
- Baranova N. B., Savchenko A. Y., Zel’dovich B. Y., Transverse shift of a focal spot due to switching of the sign of circular polarization. JETP Lett. (1994) 59, 1232–234. [NASA ADS] [Google Scholar]
- Zel’dovich B. Y., Kundikova N. D., Rogacheva L. F., Observed transverse shift of a focal spot upon a change in the sign of circular polarization. JETP Lett. (1994) 59, 1766–769. [Google Scholar]
- Nicola S. D., Anderson D., Lisak M., Focal shift effects in diffracted focused beams. Pure Appl. Opt. Part A (1998) 7, 11249–1259. https://doi.org/10.1088/0963-9659/7/5/030 [NASA ADS] [CrossRef] [Google Scholar]
- Ren Z. C., Qian S. X., Tu C., Li Y., Wang H. T., Focal shift in tightly focused Laguerre-Gaussian beams. Opt. Commun. (2015) 334, 1156–159. [NASA ADS] [CrossRef] [Google Scholar]
- Zeylikovich I., Nikitin A., Diffraction of a gaussian laser beam by a straight edge leading to the formation of optical vortices and elliptical diffraction fringes. Opt. Commun. (2018) 413, 1261–268. https://doi.org/10.1016/j.optcom.2017.12.072 [NASA ADS] [CrossRef] [Google Scholar]
- Bekshaev A. Y., Spin-orbit interaction of light and diffraction of polarized beams. J. Opt. (2017) 19, 8085602. https://doi.org/10.1088/2040-8986/aa746a [NASA ADS] [CrossRef] [Google Scholar]
- Luo Y., Lu B., Polarization singularities of Gaussian vortex beams diffracted at a half-plane screen beyond the paraxial approximation,. J. Opt. Soc. Am. A (2009) 26, 91961–1966. https://doi.org/10.1364/JOSAA.26.001961 [NASA ADS] [CrossRef] [Google Scholar]
- Terborg R. A., Volke-Sepulveda K., Quantitative characterization of the energy circulation in helical beams by means of near-field diffraction. Opt. Express (2013) 21, 33379–87. https://doi.org/10.1364/OE.21.003379 [NASA ADS] [CrossRef] [Google Scholar]
- Kundikova N., Popkov I., Difraction by a slit hollow chain-like beams with a wavefront dislocation. Russ. Phys. J. (2015) 58, 161–63. [Google Scholar]
- Bekshaev A. Y., Mohammed K. A., Spatial profile and singularities of the edge-diffracted beam with a multicharged optical vortex. Opt. Commun. (2015) 341, 1284–294. https://doi.org/10.1016/j.optcom.2014.12.019 [CrossRef] [Google Scholar]
- Worku N. G., Gross H., Propagation of truncated Gaussian beams and their application in modeling sharp-edge diffraction. J. Opt. Soc. Am. A (2019) 36, 5859. https://doi.org/10.1364/JOSAA.36.000859 [NASA ADS] [CrossRef] [Google Scholar]
- Bekshaev A., Chernykh A., Khoroshun A., Mikhaylovskaya L., Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Opt. Commun. (2017) 397, 172–83. https://doi.org/10.1016/j.optcom.2017.03.062 [NASA ADS] [CrossRef] [Google Scholar]
- Li Y., Wolf E., Focal shifts in diffracted converging spherical waves. Opt. Commun. (1981) 39, 4211–215. https://doi.org/10.1016/0030-4018(81)90108-5 [NASA ADS] [CrossRef] [Google Scholar]
- Givens M. P., Focal shifts in diffracted converging spherical waves. Opt. Commun. (1982) 41, 3145–148. https://doi.org/10.1016/0030-4018(82)90059-1 [NASA ADS] [CrossRef] [Google Scholar]
- Herman R. M., Pardo J., Wiggins T. A., Diffraction and focusing of Gaussian beams. Appl. Opt. (1985) 24, 91346. https://doi.org/10.1364/AO.24.001346 [NASA ADS] [CrossRef] [Google Scholar]
- Bischoff J., Neundorf W., Effective schema for the rigorous modeling of grating diffraction with focused beams. Appl. Opt. (2011) 50, 162474. https://doi.org/10.1364/AO.50.002474 [NASA ADS] [CrossRef] [Google Scholar]
- Livanos A. C., George N., Edge Diffraction of a Convergent Wave. Appl. Opt. (1975) 14, 3608. https://doi.org/10.1364/AO.14.000608 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.