Open Access
Review
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Article Number 15
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-019-0108-1
Published online 19 June 2019
  1. Russbueldt P, Mans T, Weitenberg J, Hoffmann HD, Poprawe R, Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett. (2010) 35, 4169–4171. https://doi.org/10.1364/OL.35.004169 [Google Scholar]
  2. Gaida C, Gebhardt M, Heuermann T, Stutzki F, Jauregui C, Limpert J, Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. (2018) 43, 5853–5856. https://doi.org/10.1364/OL.43.005853 [Google Scholar]
  3. Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, et al.1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. (2017) 42, 1381–1384. https://doi.org/10.1364/OL.42.001381 [Google Scholar]
  4. Negel JP, Loescher A, Voss A, Bauer D, Sutter D, Killi A, et al.Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Express (2015) 23, 21064–21077. https://doi.org/10.1364/OE.23.021064 [Google Scholar]
  5. Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A, Limpert J, 3.5 kW coherently combined ultrafast fiber laser. Opt. Lett. (2018) 43, 6037–6040. https://doi.org/10.1364/OL.43.006037 [Google Scholar]
  6. Giesen A, Hügel H, Voss A, Wittig K, Brauch U, Opower H, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B Lasers Opt. (1994) 58, 365–372. https://doi.org/10.1007/BF01081875 [NASA ADS] [CrossRef] [Google Scholar]
  7. Erhard, S.: Pumpoptiken und Resonatoren für den Scheibenlaser. University of Stuttgart (2002) [Google Scholar]
  8. Aus der Au J, Spühler GJ, Südmeyer T, Paschotta R, Hövel R, Moser M, et al.16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. Opt. Lett. (2000) 25, 859–861. https://doi.org/10.1364/OL.25.000859 [Google Scholar]
  9. Saraceno Clara J., Emaury Florian, Schriber Cinia, Diebold Andreas, Hoffmann Martin, Golling Matthias, Sudmeyer Thomas, Keller Ursula, Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators. IEEE Journal of Selected Topics in Quantum Electronics (2015) 21, 1106–123. https://doi.org/10.1109/JSTQE.2014.2341588 [NASA ADS] [CrossRef] [Google Scholar]
  10. Herkommer C, Krötz P, Klingebiel S, Wandt C, Bauer D, Michel K, et al.Towards a Joule-Class Ultrafast Thin-Disk Based Amplifier at Kilohertz Repetition Rate (2019) San Jose, CaliforniaPresented at the Conference on Lasers and Electro-Opticshttps://doi.org/10.1364/CLEO_SI.2019.SM4E.3 [Google Scholar]
  11. Keller U, Weingarten KJ, Kärtner FX, Kopf D, Braun B, Jung ID, et al.Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. (1996) 2, 435–453. https://doi.org/10.1109/2944.571743 [NASA ADS] [CrossRef] [Google Scholar]
  12. Kärtner FX, Keller U, Stabilization of soliton-like pulses with a slow saturable absorber. Opt. Lett. (1995) 20, 16–18. https://doi.org/10.1364/OL.20.000016 [Google Scholar]
  13. Paschotta R, Keller U, Passive mode locking with slow saturable absorbers. Appl. Phys. B Lasers Opt. (2001) 73, 653–662. https://doi.org/10.1007/s003400100726 [NASA ADS] [CrossRef] [Google Scholar]
  14. Brabec T, Spielmann C, Curley PF, Krausz F, Kerr lens mode locking. Opt. Lett. (1992) 17, 1292–1294. https://doi.org/10.1364/OL.17.001292 [Google Scholar]
  15. Palmer G, Schultze M, Siegel M, Emons M, Bünting U, Morgner U, Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime. Opt. Lett. (2008) 33, 1608–1610. https://doi.org/10.1364/OL.33.001608 [Google Scholar]
  16. Pronin O, Brons J, Grasse C, Pervak V, Boehm G, Amann MC, et al.High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. Opt. Lett. (2012) 37, 3543–3545. https://doi.org/10.1364/OL.37.003543 [Google Scholar]
  17. Ilday FO, Kesim DK, Hoffmann M, Saraceno CJ, Discrete Similariton and dissipative soliton Modelocking for energy scaling ultrafast thin-disk laser oscillators. IEEE J. Sel. Top. Quantum Electron. (2018) 24, 1–2. https://doi.org/10.1109/JSTQE.2018.2832651 [Google Scholar]
  18. Hönninger C, Johannsen I, Moser M, Zhang G, Giesen A, Keller U, Diode-pumped thin disk Yb:YAG regenerative amplifier. Appl. Phys. B Lasers Opt. (1997) 65, 423–426. https://doi.org/10.1007/s003400050291 [CrossRef] [Google Scholar]
  19. Metzger T, Schwarz A, Teisset CY, Sutter D, Killi A, Kienberger R, et al.High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. Opt. Lett. (2009) 34, 2123–2125. https://doi.org/10.1364/OL.34.002123 [Google Scholar]
  20. Heckl OH, Kleinbauer J, Bauer D, Weiler S, Metzger T, Sutter DH, Nolte S, Schrempel F, Dausinger F, Ultrafast thin-disk lasers. Ultrashort Pulse Laser Technology: Laser Sources and Applications (2016) ChamSpringer International Publishing93–115. https://doi.org/10.1007/978-3-319-17659-8_5 [Google Scholar]
  21. Fleischhaker, R., Gebs, R., Budnicki, A., Wolf, M., Kleinbauer, J., Sutter, D.H.: Compact gigawatt-class sub-picosecond Yb: YAG thin-disk regenerative chirped-pulse amplifier with high average power at up to 800 kHz. Presented at the Conference on and International Quantum Electronics Conference Lasers and Electro-Optics Europe (Cleo Europe) (2013) [Google Scholar]
  22. Ueffing M, Lange R, Pleyer T, Pervak V, Metzger T, Sutter D, et al.Direct regenerative amplification of femtosecond pulses to the multimillijoule level. Opt. Lett. (2016) 41, 3840–3843. https://doi.org/10.1364/OL.41.003840 [Google Scholar]
  23. Antognini A, Schuhmann K, Amaro FD, Biraben F, Dax A, Giesen A, et al.Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime. IEEE J. Quantum Electron. (2009) 45, 983–995. https://doi.org/10.1109/JQE.2009.2014881 [Google Scholar]
  24. Negel JP, Voss A, Ahmed MA, Bauer D, Sutter D, Killi A, et al.1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. Opt. Lett. (2013) 38, 5442–5445. https://doi.org/10.1364/OL.38.005442 [Google Scholar]
  25. Negel JP, Loescher A, Dannecker B, Oldorf P, Reichel S, Peters R, et al.Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization. Appl. Phys. B Lasers Opt. (2017) 123, 156. https://doi.org/10.1007/s00340-017-6739-2 [NASA ADS] [CrossRef] [Google Scholar]
  26. Abdou-Ahmed M, Development of High-Power Thin-Disk Lasers: Status and Perspectives (2017) StrasbourgPresented at the JNPLI [Google Scholar]
  27. Röcker, C., Loescher, A., Negel, J.P., Delaigue, M., Morin, F., Hönninger, C., et al.: kW-class thin-disk multipass amplifier delivering sub-300fs pulses at a repetition rate of 1 MHz for high-throughput laser-based material processing, p. 2018. In International Congress on Applications of Lasers & Electro-Optics (ICALEO), Orlando, Florida [Google Scholar]
  28. Saraceno CJ, Emaury F, Heckl OH, Baer CRE, Hoffmann M, Schriber C, et al.275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Opt. Express (2012) 20, 23535–23541. https://doi.org/10.1364/OE.20.023535 [Google Scholar]
  29. Saraceno CJ, Emaury F, Schriber C, Hoffmann M, Golling M, Südmeyer T, et al.Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power. Opt. Lett. (2014) 39, 9–12. https://doi.org/10.1364/OL.39.000009 [Google Scholar]
  30. Saltarelli F, Graumann I, Lang L, Bauer D, Phillips C, Keller U, Power Scaling of Ultrafast Laser Oscillators: 350-W Output Power Sub-Ps SESAM-Modelocked Thin-Disk Laser (2019) San Jose, CAPresented at the Conference on Lasers and Electro Optics CLEO 2019 [Google Scholar]
  31. Brons J, Pervak V, Fedulova E, Bauer D, Sutter D, Kalashnikov VL, et al.Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett. (2014) 39, 6442–6445. https://doi.org/10.1364/OL.39.006442 [Google Scholar]
  32. Brons J, Pervak V, Bauer D, Sutter D, Pronin O, Krausz F, Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Opt. Lett. (2016) 41, 3567–3570. https://doi.org/10.1364/OL.41.003567 [Google Scholar]
  33. Bauer D, Zawischa I, Sutter DH, Killi A, Dekorsy T, Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express (2012) 20, 9698–9704. https://doi.org/10.1364/OE.20.009698 [Google Scholar]
  34. Graf, T., Weber, R., Abdou-Ahmed, M., Onuseit, V., Freitag, C., Weidenmann, M., et al.: Efficient High-Quality Processing of CFRP with a kW Ultrafast Thin-Disk Laser. Presented at the Advanced Solid State Lasers (2015) [Google Scholar]
  35. Faas S, Weber R, Graf T, Heat accumulation controlled surface functionalization of stainless steel with structuring rates up to 500 mm2/s. Procedia CIRP (2018) 74, 324–327. https://doi.org/10.1016/j.procir.2018.08.125 [Google Scholar]
  36. Jenne M, Flamm D, Ouaj T, Hellstern J, Kleiner J, Grossmann D, et al.High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams. Opt. Lett. (2018) 43, 3164–3167. https://doi.org/10.1364/OL.43.003164 [Google Scholar]
  37. Emaury F, Diebold A, Saraceno CJ, Keller U, Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica (2015) 2, 980–984. https://doi.org/10.1364/OPTICA.2.000980 [Google Scholar]
  38. Hädrich S, Klenke A, Rothhardt J, Krebs M, Hoffmann A, Pronin O, et al.High photon flux table-top coherent extreme-ultraviolet source. Nat Photon (2014) 8, 779–783. https://doi.org/10.1038/nphoton.2014.214 [Google Scholar]
  39. Leone SR, McCurdy CW, Burgdoerfer J, Cederbaum LS, Chang Z, Dudovich N, et al.What will it take to observe processes in 'real time'?. Nat. Phot. (2014) 8, 162–166. https://doi.org/10.1038/nphoton.2014.48 [Google Scholar]
  40. Südmeyer T, Marchese SV, Hashimoto S, Baer CRE, Gingras G, Witzel B, et al.Femtosecond laser oscillators for high-field science. Nat. Phot. (2008) 2, 599–604. https://doi.org/10.1038/nphoton.2008.194 [Google Scholar]
  41. Meyer F, Hekmat N, Mansourzadeh S, Fobbe F, Aslani F, Hoffmann M, et al.Optical rectification of a 100 W average power mode-locked thin-disk oscillator. Opt. Lett. (2018) 43, 5909–5912. https://doi.org/10.1364/OL.43.005909 [Google Scholar]
  42. Seidel M, Xiao X, Hussain S, Arisholm G, Hartung A, Zawilski KT, et al.Multi-watt, multi-octave, mid-infrared femtosecond source. Sci. Adv. (2018) 4, eaaq1526. https://doi.org/10.1126/sciadv.aaq1526 [Google Scholar]
  43. Südmeyer T, Kränkel C, Baer CRE, Heckl OH, Saraceno CJ, Golling M, et al.High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Appl. Phys. B Lasers Opt. (2009) 97, 281–295. https://doi.org/10.1007/s00340-009-3700-z [CrossRef] [Google Scholar]
  44. Beil K, Saraceno CJ, Schriber C, Emaury F, Heckl OH, Baer CRE, et al.Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup. Appl. Phys. B Lasers Opt. (2013) 113, 13–18. https://doi.org/10.1007/s00340-013-5433-2 [NASA ADS] [CrossRef] [Google Scholar]
  45. Diebold A, Emaury F, Saraceno CJ, Schriber C, Golling M, Südmeyer T, et al.62-fs pulses from a SESAM modelocked Yb:CALGO thin disk laser. Opt. Lett. (2013) 38, 3842–3845. https://doi.org/10.1364/OL.38.003842 [Google Scholar]
  46. Modsching N, Paradis C, Labaye F, Gaponenko M, Graumann IJ, Diebold A, et al.Kerr lens mode-locked Yb:CALGO thin-disk laser. Opt. Lett. (2018) 43, 879–882. https://doi.org/10.1364/OL.43.000879 [Google Scholar]
  47. Modsching N, Drs J, Fischer J, Paradis C, Labaye F, Gaponenko M, et al.21 W Average Power Sub-100-Fs Yb:Lu2O3 Thin-Disk Laser (2019) San Jose, CaliforniaPresented at the Conference on Lasers and Electro-Optics [Google Scholar]
  48. Emaury F, Saraceno CJ, Debord B, Ghosh D, Diebold A, Gerome F, et al.Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression. Opt. Lett. (2014) 39, 6843–6846. https://doi.org/10.1364/OL.39.006843 [Google Scholar]
  49. Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P, Nonlinear pulse compression in a multi-pass cell. Opt. Lett. (2016) 41, 4511–4514. https://doi.org/10.1364/OL.41.004511 [Google Scholar]
  50. Fritsch K, Poetzlberger M, Pervak V, Brons J, Pronin O, All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett. (2018) 43, 4643–4646. https://doi.org/10.1364/OL.43.004643 [Google Scholar]
  51. Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, et al.Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Opt. Lett. (2018) 43, 5877–5880. https://doi.org/10.1364/OL.43.005877 [Google Scholar]
  52. Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, et al.High-power two-cycle ultrafast source based on hybrid nonlinear compression. Opt. Express (2019) 27, 1958–1967. https://doi.org/10.1364/OE.27.001958 [Google Scholar]
  53. Tsai C-L, Meyer F, Omar A, Wang Y, L. a Y, Lu C-H, et al.27-Fs, 166-MW Pulses at 98 W Average Power from Highly Efficient Thin-Disk Oscillator Driven Nonlinear Compressor (2019) San Jose, CaliforniaPresented at the Conference on Lasers and Electro-Opticshttps://doi.org/10.1364/CLEO_AT.2019.JTh5A.4 [Google Scholar]
  54. Dannecker B, Negel JP, Loescher A, Oldorf P, Reichel S, Peters R, et al.Exploiting nonlinear spectral broadening in a 400 W Yb:YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration. Opt. Commun. (2018) 429, 180–188. https://doi.org/10.1016/j.optcom.2018.08.022 [Google Scholar]
  55. Emaury F, Diebold A, Klenner A, Saraceno CJ, Schilt S, Sudmeyer T, et al.Frequency comb offset dynamics of SESAM modelocked thin disk lasers. Opt. Express (2015) 23, 21836–21856. https://doi.org/10.1364/OE.23.021836 [Google Scholar]
  56. Grobmeyer S, Brons J, Seidel M, Pronin O, Carrier-envelope-offset frequency stable 100 W-level femtosecond thin-disk oscillator. Laser Photonics Rev. (2019) 13, 1800256. https://doi.org/10.1002/lpor.201800256 [Google Scholar]
  57. Wolter JH, Ahmed MA, Graf T, Thin-disk laser operation of Ti:sapphire. Opt. Lett. (2017) 42, 1624–1627. https://doi.org/10.1364/OL.42.001624 [Google Scholar]
  58. Wolter AVJ, Balmer R, Ricaud S, Antier M, Simon-Boisson C, Graf T, Ahmed MA, Symmetrically-Cooled Ti:Sapphire Thin-Disk Laser Using Single-Crystal Diamond Heat Spreaders (2018) BostonPresented at the Laser Congress (Advanced Solid State Lasers) [Google Scholar]
  59. Zhang, J.W., Mak, K.F., Pronin, O.: Kerr-Lens mode-locked 2-mu m thin-disk lasers. IEEE J. Sel. Top. Quantum Electron. 24, (2018) [Google Scholar]
  60. Zhang Jinwei, Schulze Felix, Mak Ka Fai, Pervak Vladimir, Bauer Dominik, Sutter Dirk, Pronin Oleg, High-Power, High-Efficiency Tm:YAG and Ho:YAG Thin-Disk Lasers. Laser & Photonics Reviews (2018) 12, 31700273. https://doi.org/10.1002/lpor.201700273 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.