Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1186/s41476-019-0112-5 | |
Published online | 18 June 2019 |
- Gross, H., Blechinger, F., Achtner, B.: Handbook of Optical Systems, Volume 4, Survey of Optical Instruments. Wiley-VCH (2008) [Google Scholar]
- Artal, P.: Handbook of Visual Optics, Volume Two: Instrumentation and Vision Correction. CRC Press (2017) [Google Scholar]
- Atchison DA, Third-order theory and aspheric spectacle lens design. Ophthalmic Physiol. Opt. (1984) 4, 179–186. https://doi.org/10.1111/j.1475-1313.1984.tb00353.x [Google Scholar]
- Atchison DA, Spectacle lens design: a review. Appl. Opt. (1992) 31, 3579–3585. https://doi.org/10.1364/AO.31.003579 [NASA ADS] [CrossRef] [Google Scholar]
- Barbero S, Minimum tangential error ophthalmic lens design without multi-parametric optimization. Opt. Commun. (2012) 285, 2769–2773. https://doi.org/10.1016/j.optcom.2012.01.071 [NASA ADS] [CrossRef] [Google Scholar]
- Jia Z, Xu K, Fang F, Measurement of spectacle lenses using wavefront aberration in real view condition. Opt. Express (2017) 25, 22125–22139. https://doi.org/10.1364/OE.25.022125 [NASA ADS] [CrossRef] [Google Scholar]
- Gross, H.: Handbook of optical systems. In: Fundamentals of Technical Optics, vol. 1. Wiley-VCH (2005) [Google Scholar]
- Stone T, George N, Hybrid diffractive-refractive lenses and achromats. Appl. Opt. (1988) 27, 2960–2971. https://doi.org/10.1364/AO.27.002960 [NASA ADS] [CrossRef] [Google Scholar]
- Wood A, Design of infrared hybrid refractive–diffractive lenses. Appl. Opt. (1992) 31, 2253–2258. https://doi.org/10.1364/AO.31.002253 [NASA ADS] [CrossRef] [Google Scholar]
- Flores A, Wang MR, Yang JJ, Achromatic hybrid refractive-diffractive lens with extended depth of focus. Appl. Opt. (2004) 43, 5618–5630. https://doi.org/10.1364/AO.43.005618 [NASA ADS] [CrossRef] [Google Scholar]
- Artigas JM, Menezo JL, Peris C, Felipe A, Díaz-Llopis M, Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive–diffractive designs. J Cataract Refract Surg (2007) 33, 2111–2117. https://doi.org/10.1016/j.jcrs.2007.07.035 [CrossRef] [Google Scholar]
- J. Trapp, M. Decker, J. Petschulat, T. Pertsch, and T. G. Jabbour, "Holographic progressive lenses," in SPIE Optical Engineering + Applications (SPIE2018), p. 7 [Google Scholar]
- Trapp JM, Decker M, Petschulat J, Pertsch T, Jabbour TG, Design of a 2 diopter holographic progressive lens. Opt. Express (2018) 26, 32866–32877. https://doi.org/10.1364/OE.26.032866 [CrossRef] [Google Scholar]
- C. B. Martin, "Design issues of a hyperfield fisheye lens," in Optical Science and Technology, the SPIE 49th Annual Meeting (SPIE2004), p. 9 [Google Scholar]
- Meister D, Sheedy JE, Introduction to ophthalmic optics (SOLA Optical USA) (2000) [Google Scholar]
- Kommnick J, Schal S, Fricke V, Thape T, Fischer H, Augenoptik in Lernfeldern (Handwerk + Technik GmbH) (2014) [Google Scholar]
- Goersch, H.: Wörterbuch der Optometrie. DOZ-Verlag (2004) [Google Scholar]
- Davidson N, Friesem AA, Hasman E, Analytic design of hybrid diffractive–refractive achromats. Appl. Opt. (1993) 32, 4770–4774. https://doi.org/10.1364/AO.32.004770 [NASA ADS] [CrossRef] [Google Scholar]
- Zhou G, Leung HM, Yu H, Kumar AS, Chau FS, Liquid tunable diffractive/refractive hybrid lens. Opt. Lett. (2009) 34, 2793–2795. https://doi.org/10.1364/OL.34.002793 [NASA ADS] [CrossRef] [Google Scholar]
- Li L, New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A (1997) 14, 2758–2767. https://doi.org/10.1364/JOSAA.14.002758 [NASA ADS] [CrossRef] [Google Scholar]
- Loewen, E.G., Popov, E.: Diffraction Gratings and Applications. Taylor & Francis (1997) [Google Scholar]
- Riedl, M.J.: Optical Design: Applying the Fundamentals. SPIE Press (2009) [Google Scholar]
- DIN Deutsches Institut für Normung e. V., "Ophthalmic Optics - Uncut Finished Spectacle Lenses - Part 1: Specifications for Single-Vision and Multifocal Lenses (ISO 8980-1:2004)"; German version EN ISO 8980-1:2004, [Google Scholar]
- Lee C-K, Wu JW-J, Yeh S-L, Tu C-W, Han Y-A, Liao EH-Z, Chang LY-Y, Tsai I-E, Lin H-H, Hsieh JC-T, Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer. Appl. Opt. (2000) 39, 40–53. https://doi.org/10.1364/AO.39.000040 [NASA ADS] [CrossRef] [Google Scholar]
- Hong K, Park S-g, Yeom J, Kim J, Chen N, Pyun K, Choi C, Kim S, An J, Lee H-S, Resolution enhancement of holographic printer using a hogel overlapping method. Opt. Express (2013) 21, 14047–14055. https://doi.org/10.1364/OE.21.014047 [NASA ADS] [CrossRef] [Google Scholar]
- Su J, Yan X, Huang Y, Jiang X, Chen Y, Zhang T, Progress in the synthetic holographic stereogram printing technique. Appl. Sci. (2018) 8, 851. https://doi.org/10.3390/app8060851 [NASA ADS] [CrossRef] [Google Scholar]
- Marín-Sáez J, Atencia J, Chemisana D, Collados M-V, Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Opt. Express (2016) 24, A720–A730. https://doi.org/10.1364/OE.24.00A720 [CrossRef] [Google Scholar]
- Berneth H, Bruder F-K, Fäcke T, Jurbergs D, Hagen R, Hönel D, Rölle T, Walze G, Bayfol HX Photopolymer for Full-Color Transmission Volume Bragg Gratings (2014) 900602–900602-900610. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.