J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 3
Number of page(s) 4
Published online 27 March 2019
  1. Zworski M., Resonances in physics and geometry. Not. Amer. Math. Soc (1999) 46, 319–328. [Google Scholar]
  2. Novotny L., Hecht B., Principles of Nano-Optics (2012) CambridgeCambridge University Press [CrossRef] [Google Scholar]
  3. Lalanne P., Yan W., Vynck K., Sauvan C., Hugonin J. -P., Light Interaction with Photonic and Plasmonic Resonances. Laser Photonics Rev (2018) 12, 1700113. [CrossRef] [Google Scholar]
  4. Tisseur F., Meerbergen K., The Quadratic Eigenvalue Problem. SIAM Rev (2001) 43, 235–286. [NASA ADS] [CrossRef] [Google Scholar]
  5. Mehrmann V., Voss H., Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt. (2005) 27, 121–152. [Google Scholar]
  6. Güttel S., Tisseur F., The Nonlinear Eigenvalue Problem. Acta Numer (2017) 26, 1–94. [CrossRef] [Google Scholar]
  7. Joseph R. M., Hagness S. C., Taflove A., Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses. Opt. Lett. (1991) 16, 1412–1414. [NASA ADS] [CrossRef] [Google Scholar]
  8. Tip A., Linear absorptive dielectrics. Phys. Rev. A (1998) 57, 4818–4841. [NASA ADS] [CrossRef] [Google Scholar]
  9. Raman A., Fan S., Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem. Phys. Rev. Lett (2010) 104, 087401. [NASA ADS] [CrossRef] [Google Scholar]
  10. Brûlé Y., Gralak B., Demésy G., Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. J. Opt. Soc. Am. B (2016) 33, 691–702. [CrossRef] [Google Scholar]
  11. Yan W., Faggiani R., Lalanne P., Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B (2018) 97, 205422. [CrossRef] [Google Scholar]
  12. Demésy, G., Nicolet, A., Gralak, B., Geuzaine, C., Campos, C., Roman, J. E.: Eigenmode computations of frequency-dispersive photonic open structures: A non-linear eigenvalue problem. arXiv:1802.02363v2 (2018). [Google Scholar]
  13. Zschiedrich L., Burger S., Kettner B., Schmidt F., Advanced finite element method for nano-resonators. Proc. SPIE (2006) 6115, 611515. [Google Scholar]
  14. Weiser M., Inside Finite Elements (2016) BerlinDe Gruyter [CrossRef] [Google Scholar]
  15. Jackson J. D., Classical Electrodynamics (1998) New YorkWiley [Google Scholar]
  16. Saad Y., Numerical Methods for Large Eigenvalue Problems (2011) PhiladelphiaSIAM [CrossRef] [Google Scholar]
  17. Collin S., Vincent G., Haïdar R., Bardou N., Rommeluère S., Pelouard J. -L., Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane. Phys. Rev. Lett (2010) 104, 027401. [NASA ADS] [CrossRef] [Google Scholar]
  18. Lalanne, P., Yan, W., Gras, A., Sauvan, C., Hugonin, J. -P., Besbes, M., Demésy, G., Truong, M. D., Gralak, B., Zolla, F., Nicolet, A., Binkowski, F., Zschiedrich, L., Burger, S., Zimmerling, J., Remis, R., Urbach, P., Liu, H. T., Weiss, T.: Quasinormal mode solvers for resonators with dispersive materials. arXiv:1811.11751v1 (2018). [Google Scholar]
  19. Wurm M., Endres J., Probst J., Schoengen M., Diener A., Bodermann B., Metrology of nanoscale grating structures by UV scatterometry. Opt. Express (2017) 25, 2460–2468. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.