Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1186/s41476-018-0087-7 | |
Published online | 31 July 2018 |
- Kong LB, et al.A theoretical and experimental investigation of design and slow tool servo machining of freeform progressive addition lenses (PALs) for optometric applications. Int. J. Adv. Manuf. Technol. (2014) 72, 33–40. https://doi.org/10.1007/s00170-013-5215-3 [CrossRef] [Google Scholar]
- Savio G, Concheri G, Meneghello R, Progressive lens design by discrete shape modelling techniques. Int. J. Interact. Des. Manuf. (2013) 7, 135–146. https://doi.org/10.1007/s12008-012-0170-z [CrossRef] [Google Scholar]
- Hsu W-Y, et al.Design, fabrication, and metrology of ultra-precision optical freeform surface for progressive addition lens with B-spline description. Int. J. Adv. Manuf. Technol. (2012) 63, 1–4225–233. https://doi.org/10.1007/s00170-012-3901-1 [CrossRef] [Google Scholar]
- Jiang W, et al.A variational-difference numerical method for designing progressive-addition lenses. Comput. Aided Des. (2014) 48, 17–27. https://doi.org/10.1016/j.cad.2013.10.011 [CrossRef] [Google Scholar]
- Xiang HZ, et al.Theoretical and experimental investigation of design for multioptical-axis freeform progressive addition lenses. Opt. Eng. (2015) 115110, 1–954. [Google Scholar]
- Shaw D, Lin C-W, Design and analysis of an asymmetrical liquid-filled lens. Opt. Eng. (2007) 46, 123002. https://doi.org/10.1117/1.2821426 [CrossRef] [Google Scholar]
- Mikš A, Novák P, Calculation of a surface shape of a pressure actuated membrane liquid lens. Opt. Lasers Eng. (2014) 58, 60–66. https://doi.org/10.1016/j.optlaseng.2014.01.026 [CrossRef] [Google Scholar]
- Yu H, et al.A liquid-filled tunable double-focus microlens. Opt. Express (2009) 17, 4782–4790. https://doi.org/10.1364/OE.17.004782 [NASA ADS] [CrossRef] [Google Scholar]
- Yu H, et al.Tunable electromagnetically actuated liquid-filled lens. Sensors Actuators A Phys. (2011) 167, 602–607. https://doi.org/10.1016/j.sna.2011.03.005 [CrossRef] [Google Scholar]
- Sang Hoon O, Rhee K, Chung SK, Electromagnetically driven liquid lens. Sensors Actuators A Phys. (2016) 240, 153–159. https://doi.org/10.1016/j.sna.2016.01.048 [CrossRef] [Google Scholar]
- Scherger B, Jördens C, Koch M, Variable-focus terahertz lens. Opt. Express (2011) 19, 4528–4535. https://doi.org/10.1364/OE.19.004528 [NASA ADS] [CrossRef] [Google Scholar]
- Maffli L, Rosset S, Ghiardi M, Carpi F, Shea H, Ultrafast all-polymer electrically tunable silicone Lens. Adv. Funct. Mater. (2015) 25, 1656–1665. https://doi.org/10.1002/adfm.201403942 [CrossRef] [Google Scholar]
- Son H-M, Kim MY, Lee Y-J, Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator. Opt. Express (2009) 17, 14339–14350. https://doi.org/10.1364/OE.17.014339 [NASA ADS] [CrossRef] [Google Scholar]
- Zhao P, Ataman C, Zappe H, Spherical aberration free liquid-filled tunable lens with variable thickness membrane. Opt. Express (2015) 23, 21264–21278. https://doi.org/10.1364/OE.23.021264 [CrossRef] [Google Scholar]
- Lee JK, Park K-W, Lim G, Variable-focus liquid Lens based on a laterally-integrated Thermopneumatic actuator. J. Opt. Soc. Korea (2012) 16, 22–28. https://doi.org/10.3807/JOSK.2012.16.1.022 [CrossRef] [Google Scholar]
- Wang L, Oku H, Ishikawa M, An improved low-optical-power variable focus lens with a large aperture. Opt. Express (2014) 22, 19448–19456. https://doi.org/10.1364/OE.22.019448 [CrossRef] [Google Scholar]
- ZHAO PENGPENG, ATAMAN ÇAGLAR, ZAPPE HANS, Gravity-immune liquid-filled tunable lens with reduced spherical aberration. Appl. Opt. (2016) 55, 7816–7823. https://doi.org/10.1364/AO.55.007816 [NASA ADS] [CrossRef] [Google Scholar]
- Ren H, Wu S-T, Variable-focus liquid lens. Opt. Express (2007) 15, 5931–5936. https://doi.org/10.1364/OE.15.005931 [CrossRef] [Google Scholar]
- Tan HY, Loke WK, Nguyen N-T, A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps. Sensors Actuators B Chem. (2010) 151, 133–139. https://doi.org/10.1016/j.snb.2010.09.035 [CrossRef] [Google Scholar]
- Lee JK, et al.Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA-PDMS bonded membrane. J. Micromech. Microeng. (2012) 22, 1–11115028. https://doi.org/10.1088/0960-1317/22/11/115028 [NASA ADS] [CrossRef] [Google Scholar]
- Quanying W, et al.Design for progressive addition lenses. Proc. SPIE Int. Soc. Opt. Eng (2007) 6772, 67720C. [Google Scholar]
- Quanying W, et al.Study on power law along meridian line for progressive addition lenses. Proc. SPIE-2008 Int. Conf. Opt. Instrum. Technol (2008) 7156, 71561N. [Google Scholar]
- Winthrop JT, Progressive power ophthalmic lenses. US Patent 4 (1989) 861, 15329. [Google Scholar]
- Yunhai T, et al.A kind of optimizing design method of progressive addition lenses. Proc. SPIE-5th Int. Symp. Adv. Opt. Manuf. Test. Technol (2010) 7655, 76551T. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.