Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 18
Number of page(s) 9
Published online 02 August 2018
  1. Dyson J, Circular and spiral diffraction gratings,. Proc. Royal Soc. A (1958) 248, 93–106. [Google Scholar]
  2. Vasara A, Turunen J, Friberg AT, Realization of gerneral nondiffracting beams with computer-generated holograms,. J. Opt. Soc. Am A (1989) 6, 1748–1754. [NASA ADS] [CrossRef] [Google Scholar]
  3. Abramochkin E, Volostnikov V, Spiral-type beams,. Opt. Commun (1993) 102, 336–350. [NASA ADS] [CrossRef] [Google Scholar]
  4. Soskin M, Vasnetsov M, Wolf E, Singular optics. Progress in optics, vol. 42 (2001) AmsterdamElsevier Science B.V. [Google Scholar]
  5. Allen L, Padgett M, Babiker M, The orbital angular momentum of light,. Prog. Opt (1999) 39, 291–372. [NASA ADS] [CrossRef] [Google Scholar]
  6. Nye JF, Berry MV, Dislocations in wave trains. Proc. Roy. Soc. London (1974) 336, 165–190. [Google Scholar]
  7. Garcés-Chávez V, Volke-Sepulveda K, Chávez-Cerda S, Sibbett W, Dholakia K, Transfer of orbital angular momentum to an optically trapped low-index particle. Phys. Rev. A (2002) 66, 063402. [CrossRef] [Google Scholar]
  8. Davis JA, McNamara DE, Cottrell DM, Image processing with the radial hilbert transform: theory and experiments. Opt. Lett (2000) 25, 99–101. [NASA ADS] [CrossRef] [Google Scholar]
  9. Kim Z, Park J, Cho S-W, Lee S-Y, Kang M, Lee B, Synthesis and dynamic switchig of surface plasmon vortices with plasmonic vortex lens. Nano Lett (2010) 10, 529–536. [NASA ADS] [CrossRef] [Google Scholar]
  10. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE, Terabit free-space data transmission employing orbit angular momentum multiplexing. Nature Photon (2012) 6, 488–496. [NASA ADS] [CrossRef] [Google Scholar]
  11. Li H, Phillips D, Wang X, Ho D, Chen L, Zhou X, Zhu J, Yu XCS, Orbital angular momentum (oam) vertical-cavity surface- emitting lasers. Optica (2015) 2, 547–552. [NASA ADS] [CrossRef] [Google Scholar]
  12. Rose P, Boguslawski M, Denz C, Nonlinear lattice structures based on families of complex nondiffracting beams. New J. Phys (2012) 14, 033018. [NASA ADS] [CrossRef] [Google Scholar]
  13. Dreischuh A, Chervenkov S, Neshev D, Paulus GG, Walther H, Generation of lattice structures of optical vortices. J. Opt. Soc. Am B (2012) 19, 550–556. [Google Scholar]
  14. Bouchal Z, Vortex array carried by a pseudo-nondiffracting beam. J. Opt. Soc. Am A (2004) 21, 1694–1702. [NASA ADS] [CrossRef] [Google Scholar]
  15. Lohmann AW, Ojeda-Castañeda J, Streibl N, Spatial periodicities. Optica Acta (1983) 30, 1259–1266. [NASA ADS] [CrossRef] [Google Scholar]
  16. Orlov S, Regelskis K, Smilgevicius V, Stabinis A, Propagation of Bessel beams carrying optical vortices. Opt. Commun (2002) 209, 155–165. [NASA ADS] [CrossRef] [Google Scholar]
  17. Vasilyeu R, Dudley A, Khilo N, Forbes A, Generating superpositions of higher order Bessel beams. Opt. Express (2009) 17, 9–23395. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kovalev AA, Kotlyar VV, Orbital angular momentum of superposition of identical shifted vortex beams. J. Opt. Soc. Am. A (2015) 32, 1805–1810. [NASA ADS] [CrossRef] [Google Scholar]
  19. Molina-Terriza G, Recolons J, Torner L, The curious arithmetic of optical vortices. Opt. Lett (2000) 25, 1135–1137. [NASA ADS] [CrossRef] [Google Scholar]
  20. Indebetouw G, Optical vortices and their propagation. J. Mod. Opt (1993) 40, 73–87. [NASA ADS] [CrossRef] [Google Scholar]
  21. Rozas, D, Sacks, ZS, Swartzlander, Jr, GA: Experimental observation of fluidlike motion of optical vortices. Phys. Rev. Lett. 79, 3399–3402 (1997). [Google Scholar]
  22. Heckenberg N, McDuff R, Smith C, Rubinsztein-Dunlop H, Wegener M, Laser beams with phase singularities. Opt. Quantum. Electron (1992) 24, 951–962. [Google Scholar]
  23. Goodman JW, Introduction to Fourier optics, 2nd ed (1996) New YorkMcGraw-Hill [Google Scholar]
  24. Curtis J, Grier D, Structure of optical vortices. Phys. Rev. Lett (2003) 90, 133901. [CrossRef] [Google Scholar]
  25. Chaibi A, Mafusire C, Forbes A, Propagation of orbital angular momentum carrying beams through a perturbing medium. J. Opt (2013) 15, 1–10. [CrossRef] [Google Scholar]
  26. Ojeda-Castañeda J, Andrés P, Martínez-Corral M, Zero axial irradiance by annular screens with angular variation. Appl. Opt (1992) 31, 4600–4602. [CrossRef] [Google Scholar]
  27. Vierke T, Jahns J, Diffraction theory for azimuthally structured fresnel zone plates. J. Opt. Soc. Am. A (2014) 31, 363–372. [NASA ADS] [CrossRef] [Google Scholar]
  28. Jahns J, Continuous and discrete diffractive elements with polar symmetries. Appl. Opt (2017) 56, A1–A7. [NASA ADS] [CrossRef] [Google Scholar]
  29. Sinzinger S, Optical Information Processing (2006) IlmenauUniversitätsverlag Ilmenau [Google Scholar]
  30. Supp S, Jahns J, Axial superposition of Bessel beams with discretized axicons. EOS Top. Meet. Diffr. Opt. 2017 (2017) JoensuuFinnland [Google Scholar]
  31. Lohmann A, Paris DP, Variable Fresnel zone pattern. Appl. Opt (1967) 6, 1567–1570. [NASA ADS] [CrossRef] [Google Scholar]
  32. Niggl L, Lanzl T, Maier M, Properties of Bessel beams generated by periodic gratings of circular symmetry. J. Opt. Soc. Am A (1997) 14, 27–33. [NASA ADS] [CrossRef] [Google Scholar]
  33. Abramowitz M, Stegun F, Handbook of Mathematical Functions (1964) Washington, D.C.U.S. Department of Commerce - National Bureau of Standards [Google Scholar]
  34. Born M, Wolf E, Principle of optics, 7th ed (1999) LondonCambridge University Press 3 [Google Scholar]
  35. Davis JA, Carcole E, Cottrell DM, Intensisty and phase measurement of nondiffracting beams gernerated with a magneto-optic spatial light modulator. Appl. Opt (1996) 35, 593–598. [NASA ADS] [CrossRef] [Google Scholar]
  36. Freund I, Critical point explosion in two-dimensional wave fields. Opt. Comm (1999) 159, 99–117. [NASA ADS] [CrossRef] [Google Scholar]
  37. Molina-Terriza G, Wright EM, Torner L, Propagation and control of noncanonical optical vortices. Opt. Lett (2001) 26, 163–165. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.