Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 6
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-018-0072-1
Published online 20 February 2018
  1. Ahmad, R.U., Pizzuto, F., Camarda, G.S., Espinola, R.L., Rao, H., Osgood, R.M.: Ultra compact corner-mirrors and T branches in silicon-on- insulator. IEEE Photon. Technol. Lett. 14(1), 65-67 (2002) [Google Scholar]
  2. Ohno, F., Fukuzawa, T., Baba, T.: Mach–Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide. Jpn. J. Appl. Phys. 44(7A), 5322–532 (2005) [Google Scholar]
  3. Camargo EA, Chong HMH, De La Rue RM, Highly compact asymmetric mach-Zehnder device based on channel guides in a two-dimensional photonic crystal. Appl. Opt. (2006) 45, 6507–6510. https://doi.org/10.1364/AO.45.006507 [NASA ADS] [CrossRef] [Google Scholar]
  4. Yang D, Tian H, Ji Y, Quan Q, Design of simultaneous high-Q and high-sensitivity refractive index sensor. J. Opt. Soc. Am. B. (2013) 30, 82027–2031. https://doi.org/10.1364/JOSAB.30.002027 [CrossRef] [Google Scholar]
  5. Yang D, Kita S, Liang F, Wang C, Tian H, Ji Y, Loncar M, Qimin Q, High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. (2014) 105, 6063118. https://doi.org/10.1063/1.4867254 [NASA ADS] [CrossRef] [Google Scholar]
  6. Chen YF, Xavier S, Rupa S, Peng C, Erickson D, Controlled photonic manipulation of proteins and other Nanomaterials. Nano Lett. (2012) 12, 31633–1637. https://doi.org/10.1021/nl204561r [NASA ADS] [CrossRef] [Google Scholar]
  7. Chong, H.M.H., De La Rue, R.M.: Tuning of photonic crystal waveguide microcavity by thermooptic effect. IEEE Photon. Technol. Lett. 16(6), 1528-1530 (2004) [Google Scholar]
  8. Geis, M.W., Spector, S.J., Williamson, R.C., Lyszczarz, T.M.: Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photon. Technol. Lett. 16(11), 2514–2516 (2003) [Google Scholar]
  9. Belotti, M., Galli, M., Gerace, D., Andreani, L.C., Guizzetti, G., Md Zain, A.R., Johnson, N.P., Sorel, M., De La Rue, R.M.: All-optical switching in silicon-on-insulator photonic wire nano–cavities. Opt. Express. 18(2), 1450-1461 (2010) [Google Scholar]
  10. Yeh, P.: Optical Waves in Layered Media. J. WILEY EDITIONS, ISBN: 978-0-471-73192-4 (1988) [Google Scholar]
  11. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice Hall, ISBN-13: 978-0139460531 (1984) [Google Scholar]
  12. Jackson JD, Classical Electrodynamics (1974) 2New YorkJohn Wiley [Google Scholar]
  13. Lalanne, P., Sauvan, C., Hugonin, J.P.: Photon confinement in photonic crystal nano-cavities. Laser Photo. Rev. 1–13 (2008) Wiley Inter-Science [Google Scholar]
  14. Bogaerts, W., De Heyn, P., Vaerenbergh, T.V., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon ring resonators. Laser. Photo. Rev. 6(1), 47–73 (2012) [Google Scholar]
  15. Md Zain AR, Johnson NP, Sorel M, De La Rue RM, Design and fabrication of high quality factor 1-D photonic crystal/photonic wire extended microcavities. IEEE Photon. Technol. Lett. (2010) 22, 9. https://doi.org/10.1109/LPT.2010.2040978 [Google Scholar]
  16. Husna, J., Mohamed, M.A., Sampe, J., Md Zain, A.R.: Numerical simulation of one dimensional (1D) photonic crystal multiple cavities based on silicon on insulator (SOI). Micro and Nanoelectronics (RSM), 2015 IEEE Regional Symposium on Semiconductor, 1–4, (2015) [Google Scholar]
  17. Lermer M, Gregersen N, Dunzer F, Reitzenstein S, Höfling S, Mørk J, Worschech L, Kamp M, Forchel A, Bloch wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. (2012) 108, 057402. https://doi.org/10.1103/PhysRevLett.108.057402 [NASA ADS] [CrossRef] [Google Scholar]
  18. Sauvan C, Lecamp G, Lalanne P, Hugonin JP, Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities. Opt. Express (2005) 13, 245. https://doi.org/10.1364/OPEX.13.000245 [CrossRef] [Google Scholar]
  19. Sauvan C, Lalanne P, Hugonin JP, Slow-wave effect and mode-profile matching in photonic crystal microcavities. Phys. Rev. B. (2005) 71, 165118. https://doi.org/10.1103/PhysRevB.71.165118 [Google Scholar]
  20. Purcell EM, Torrey HC, Pound RV, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. (1946) 69, 37. https://doi.org/10.1103/PhysRev.69.37 [NASA ADS] [CrossRef] [Google Scholar]
  21. Purcell EM, Spontaneous emission probabilities at radio frequencies. Phys. Rev. (1946) 69, 681. https://doi.org/10.1103/PhysRev.69.37 [Google Scholar]
  22. Iga K, Koyama F, Kinoshita S, Surface emitting semiconductor-lasers. IEEE J. Quantum Electron. (1988) 24, 1845–1855. https://doi.org/10.1109/3.7126 [CrossRef] [Google Scholar]
  23. Reitzenstein S, Hofmann C, Gorbunov A, Gorbunov M, Strauss M, Kwon SH, Schneider C, Loffler A, Hoefling S, Kamp M, Forchel A, AlAs/GaAs micropillar cavities with quality factors exceeding 150,000. Appl. Phys. Lett. (2007) 90, 251109. https://doi.org/10.1063/1.2749862 [NASA ADS] [CrossRef] [Google Scholar]
  24. Lecamp G, Hugonin JP, Lalanne P, Braive R, Varoutsis S, Laurent S, Lemaıtre A, Sagnes I, Patriarche G, Robert-Philip I, Abram I, Submicron-diameter semiconductor pillar microcavities with very high quality factors. Appl. Phys. Lett. (2007) 90, 091120. https://doi.org/10.1063/1.2711186 [NASA ADS] [CrossRef] [Google Scholar]
  25. Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultralow-threshold microcavity Raman laser on a microelectronic chip. Nature. 421(925), 925–928 (2003) [Google Scholar]
  26. Zhang JP, Chu DY, Wu SL, Bi WG, Tiberio RC, Joseph RM, Taflove A, Tu CW, Ho ST, Nanofabrication of 1-D photonic bandgap structures along a photonic wire. IEEE Photon. Technol. Lett. (1996) 8, 491–493. https://doi.org/10.1109/68.491093 [NASA ADS] [CrossRef] [Google Scholar]
  27. Foresi JS, Villeneuve PR, Ferrera J, Thoen ER, Steinmeyer G, Fan S, Joannopoulos JD, Kimmerling LC, Smith HI, Ippen EP, Photonic Bandgap microcavities in optical waveguides. Nature (1997) 390, 143–145. https://doi.org/10.1038/36514 [CrossRef] [Google Scholar]
  28. Velha, P., Rodier, J.C., Lalanne, P., Hugonin, J.P., Peyrade, D., Hadji, E.: Ultra high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide. New J. Phys. 8(204), (2006) [Google Scholar]
  29. Velha P, Picard E, Hadji E, Rodier JC, Lalanne P, Peyrade D, Ultrahigh Q/V Fabry-Perot microcavity on SOI substrate. Opt. Express (2007) 15, 16090–16096. https://doi.org/10.1364/OE.15.016090 [NASA ADS] [CrossRef] [Google Scholar]
  30. Md Zain AR, Johnson NP, Sorel M, De La Rue RM, Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express (2008) 16, 12084–12089. https://doi.org/10.1364/OE.16.012084 [CrossRef] [Google Scholar]
  31. Md Zain AR, De La Rue RM, Control of coupling in 1D photonic crystal coupled cavity nano-wire structures via hole diameter and position variation. J. Opt. (2015) 17, 125007. https://doi.org/10.1088/2040-8978/17/12/125007 [NASA ADS] [CrossRef] [Google Scholar]
  32. Akahane Y, Asano T, Song BS, Noda S, High-Q photonic nanocavity in two-dimensional photonic crystal. Nature (2003) 425, 944–947. https://doi.org/10.1038/nature02063 [CrossRef] [PubMed] [Google Scholar]
  33. Weidner E, Combrie S, NVQ T, De Rossi A, Nagle J, Cassette S, Talneau A, Benisty H, Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity. Appl. Phys. Lett. (2006) 89, 221104. https://doi.org/10.1063/1.2390648 [NASA ADS] [CrossRef] [Google Scholar]
  34. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ, Ultra high-Q toroid microcavity on a chip. Nature (2003) 421, 925–928. https://doi.org/10.1038/nature01371 [CrossRef] [Google Scholar]
  35. Gondarenko, A., Lipson, M.: Low modal volume dipole-like dielectric slab resonator. Opt. Express. (16), 22 17400–17409 (2008) [Google Scholar]
  36. Song BS, Noda S, Asano T, Akahane Y, Ultrahigh-Q photonic double-heterostructure nanocavity. Nat. Mater. (2005) 4, 207–210. https://doi.org/10.1038/nmat1320 [NASA ADS] [CrossRef] [Google Scholar]
  37. Deng CS, Peng HG, Gao YS, Zhong JX, Ultra high Q photonic crystal Nanobeam cavities with H-shaped holes. Physica. E. Low-Dimensional. Syatem. Nanostructures (2014) 63, 8–13. https://doi.org/10.1016/j.physe.2014.05.007 [NASA ADS] [CrossRef] [Google Scholar]
  38. Liu, H.C., Yariv, A.: Designing coupled resonator optical waveguides basedon high-Q tapered grating-defect resonators. Opt. Express. 20(8), 9249-9263 (2012) [Google Scholar]
  39. Miri, M., Sodagar, M., Mehrani, K., Eftekhar, A.A., Adibi, A., Rashidian, B.: Design and fabrication of photonic crystal Nano-beam resonator: transmission line model. J. Lightwave Technol. 32(1), 91-98 (2014) [Google Scholar]
  40. Kippenberg T. J., Spillane, S. M., Armani, D. K., Vahala, K. J.: Ultralow-threshold microcavity Raman laser on a microelectronic chip. Optics Letters, 11(29), 1224–1226 (2004) [Google Scholar]
  41. Asano, T., Song, B.S., Akahane, Y., Noda, S.: Ultrahigh-Q Nanocavities in Two-Dimensional Photonic Crystal Slabs. IEEE Journal of Selected Topics in Quantum Electronics, 6(12), 1123–1134, (2006) [Google Scholar]
  42. Akahane Y, Asano T, Song BS, Noda S, Fine-tuned high-Q photonic-crystal. Opt. Express (2005) 13, 1202–1214. https://doi.org/10.1364/OPEX.13.001202 [CrossRef] [Google Scholar]
  43. Shankar, R., Bulu, I., Loncar, M.: Integrated high quality factor silicon-on-sapphire ring resonators for the mid-infrared. Appl. Phys. Lett. 102(5), (2013) [Google Scholar]
  44. Lee, H., Chen, T., Li, J., Yang, K.Y., Jeon, S., Painter, O., Vahala, K.J.: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics. 6(6), 369-373 (2012) [Google Scholar]
  45. Gnan M, Thoms S, Macintyre DS, De La Rue RM, Fabrication of low loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane. Electron. Lett. (2008) 44, 115–116. https://doi.org/10.1049/el:20082985 [NASA ADS] [CrossRef] [Google Scholar]
  46. Confined Electrons and Photons: New Physics and Applications. In: Burstein, E, Weisbuch, C (eds.). Springer US, Plenum, New York (1994) [Google Scholar]
  47. Gayral B, Gerard JM, Lemaıtre A, Dupuis C, Manin L, Pelouard JL, High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Appl. Phys. Lett. (1999) 75, 1908. https://doi.org/10.1063/1.124894 [CrossRef] [Google Scholar]
  48. Robinson JT, Manolatou C, Chen L, Lipson M, Ultrasmall mode volumes in dielectric optical microcavities. Phys. Rev. Lett. (2005) 95, 143901. https://doi.org/10.1103/PhysRevLett.95.143901 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.