Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 33
Number of page(s) 10
DOI https://doi.org/10.1186/s41476-017-0062-8
Published online 06 November 2017
  1. Baisden PA, Atherton LJ, Hawley RA, Land TA, Menapace JA, Miller PE, et al.Large optics for the National Ignition Facility. Fusion Sci. Technol. (2016) 69, 295–351. https://doi.org/10.13182/FST15-143 [NASA ADS] [CrossRef] [Google Scholar]
  2. Campbell JH, Hawley-Fedder RA, Stolz CJ, Menapace JA, Hackel MRB, Whitman PK, et al.NIF optical materials and fabrication Technologies : an overview. Proc. SPIE (2004) 5341, 84–101. https://doi.org/10.1117/12.538471 [Google Scholar]
  3. Demos SG, DeMange P, Negres RA, et al.Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals. Opt. Express (2010) 18, 13788–13804. https://doi.org/10.1364/OE.18.013788 [NASA ADS] [CrossRef] [Google Scholar]
  4. Namba Y, Katagiri M, Nakatsuka M, Single point diamond turning of KDP inorganic nonlinear crystals for laser fusion. J. Japan Soc. Precis. Eng. (1998) 64, 1487–1491. https://doi.org/10.2493/jjspe.64.1487(in Japanese) [CrossRef] [Google Scholar]
  5. Fuchs BA, Hed PP, Baker PC, Fine diamond turning of KDP crystals. Appl. Opt. (1986) 25, 1733–1735. https://doi.org/10.1364/AO.25.001733 [NASA ADS] [CrossRef] [Google Scholar]
  6. Li Y, Yuan Z, Wang J, Xu Q, Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes. Opt. Laser Technol. (2017) 91, 149–158. https://doi.org/10.1016/j.optlastec.2016.12.022 [NASA ADS] [CrossRef] [Google Scholar]
  7. Li Y, Ye H, Yuan Z, Liu Z, Zheng Y, Zhang Z, et al.Generation of scratches and their effects on laser damage performance of silica glass. Sci Rep (2016) 6, 34818. https://doi.org/10.1038/srep34818 [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang J, Li Y, Yuan Z, Ye H, Xie R, Chen X, et al.Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers. Proc. SPIE (2015) 9532, 95320H. https://doi.org/10.1117/12.2185898 [Google Scholar]
  9. Genin FY, Salleo A, Pistor TV, et al.Role of light intensification by cracks in optical breakdown on surfaces. J. Opt. Soc. Amer. A (2001) 18, 2607–2616. https://doi.org/10.1364/JOSAA.18.002607 [CrossRef] [Google Scholar]
  10. Cheng J, Chen M, Liao W, Wang H, Wang J, Xiao Y, et al.Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal. Opt. Express (2014) 22, 28740–28755. https://doi.org/10.1364/OE.22.028740 [Google Scholar]
  11. Chen M, Cheng J, Li M, Xiao Y, Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal. Chinese Phys. B. (2012) 21, 064212. https://doi.org/10.1088/1674-1056/21/6/064212 [NASA ADS] [CrossRef] [Google Scholar]
  12. Ye H, Li Y, Zhang Q, Wang W, Yuan Z, Wang J, et al.Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers. Appl. Opt. (2016) 55, 3017–3025. https://doi.org/10.1364/AO.55.003017 [NASA ADS] [CrossRef] [Google Scholar]
  13. Ye H, Li Y, Yuan Z, Wang J, Yang W, Xu Q, Laser induced damage characteristics of fused silica optics treated by wet chemical processes. Appl. Surf. Sci. (2015) 357, 498–505. https://doi.org/10.1016/j.apsusc.2015.09.065 [NASA ADS] [CrossRef] [Google Scholar]
  14. Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, et al.High fluence laser damage precursors and their mitigation in fused silica. Opt. Express (2014) 22, 5839–5851. https://doi.org/10.1364/OE.22.005839 [NASA ADS] [CrossRef] [Google Scholar]
  15. Bifano TG, Dow TA, Scattergood RO, Ductile-regime grinding: a new Technology for Machining Brittle Materials. Trans. ASME J. Eng. Ind. (1991) 113, 184–189. https://doi.org/10.1115/1.2899676 [CrossRef] [Google Scholar]
  16. Wang S, An C, Zhang F, Wang J, Lei X, Zhang J, An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int J Mach Tool Manu (2016) 106, 98–108. https://doi.org/10.1016/j.ijmachtools.2016.04.009 [CrossRef] [Google Scholar]
  17. Reyné S, Duchateau G, Hallo L, et al.Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals. Appl. Phys. A Mater. Sci. Process. (2015) 119, 1317–1326. https://doi.org/10.1007/s00339-015-9098-z [CrossRef] [Google Scholar]
  18. Cheng J, Chen M, Liao W, Wang H, Xiao Y, Li M, Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification. Opt.Express (2013) 21, 16799–16813. https://doi.org/10.1364/OE.21.016799 [CrossRef] [Google Scholar]
  19. Stolz CJ, Feit MD, Pistor TV, Laser intensification by spherical inclusions embedded within multilayer coatings. Appl. Opt. (2006) 45, 1594–1601. https://doi.org/10.1364/AO.45.001594 [NASA ADS] [CrossRef] [Google Scholar]
  20. Schneider JB, Understanding the Finite-Difference Time-Domain Method (2014) [Google Scholar]
  21. Boyd, R.W: Nonlinear Optics 3rd Ed., Academic Press. http://www.sciencedirect.com/science/book/9780123694706 (2008) [Google Scholar]
  22. Dmitriev, VG, Gurzadyan, GG, Nikogosyan, DN: Handbook of Nonlinear Optical Crystals, Springer. http://www.springer.com/us/book/9783540653943 (1999) [Google Scholar]
  23. Zhu L, Zhang X, Xu M, Liu B, Ji S, Zhang L, Zhou H, Liu F, Wang Z, Sun X, Refractive indices in the whole transmission range of partially deuterated KDP crystals. AIP Adv. (2013) 3, 112114. https://doi.org/10.1063/1.4832225 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.