Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 32
Number of page(s) 10
DOI https://doi.org/10.1186/s41476-017-0060-x
Published online 02 November 2017
  1. Yariv, A., Yeh, P.: Photonics, 6th Ed. Oxford University Press (2007) [Google Scholar]
  2. Rabus, D.G., Hamacher, M., Troppenz, U., Heidrich, H.: Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP–InP. IEEE J. Sel. Top. QUANTUM Electron. 8(6), (2002) [Google Scholar]
  3. Madsen, C.K., Zhao, J.H.: Optical Filter Design and Analysis : a Signal Processing Approach. John Wiley (1999) [Google Scholar]
  4. Orta R, Savi P, Tascone R, Trinchero D, Synthesis of multiple-ring-resonator filters for optical systems. IEEE Photon. Technol. Lett. (1995) 7, 121447–1449. https://doi.org/10.1109/68.477278Dec. [NASA ADS] [CrossRef] [Google Scholar]
  5. Griffel G, Synthesis of optical filters using ring resonator arrays. IEEE Photon. Technol. Lett. (2000) 12, 7810–812. https://doi.org/10.1109/68.853508Jul. [NASA ADS] [CrossRef] [Google Scholar]
  6. Bogaerts W, et al.Silicon microring resonators. Laser Photonics Rev. (2012) 6, 147–73. https://doi.org/10.1002/lpor.201100017 [NASA ADS] [CrossRef] [Google Scholar]
  7. Almeida VR, Barrios CA, Panepucci RR, Lipson M, All-optical control of light on a silicon chip. Nature (2004) 431, 70121081–1084. https://doi.org/10.1038/nature02921Oct. [CrossRef] [Google Scholar]
  8. R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. - Rapid Publ., vol. 7, no. 12029, Jul. 2012 [Google Scholar]
  9. H. Pinhas, L. Bidani, O. Baharav, M. Sinvani, M. Danino, and Z. Zalevsky, “All optical modulator based on silicon resonator,” in SPIE, 2015, vol. 9609, p. 96090L–96090L–7 [Google Scholar]
  10. G. Cocorullo, F. G. Della Corte, M. Iodice, and I. Rendina, “Simple and low-cost silicon Fabry-Perot filter for WDM channel monitoring,” in 2000 Digest of the LEOS Summer Topical Meetings. Electronic-Enhanced Optics. Optical Sensing in Semiconductor Manufacturing. Electro-Optics in Space. Broadband Optical Networks (Cat. No.00TH8497), 2000, pp. IV45–IV46 [Google Scholar]
  11. Iodice M, Cocorullo G, Della Corte F, Rendina I, silicon Fabry–Perot filter for WDM systems channels monitoring. Opt. Commun. (2000) 183, 5–6415–418. https://doi.org/10.1016/S0030-4018(00)00901-9Sep. [NASA ADS] [CrossRef] [Google Scholar]
  12. Liu Z, Liu Z, Deng Z, Tao L, Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter. Appl. Opt. (2016) 55, 112985. https://doi.org/10.1364/AO.55.002985Apr. [CrossRef] [Google Scholar]
  13. N. European Exhibition on Optical Communication 2nd : Oslo, 22nd European Conference on Optical Communication, ECOC 96 : September 1519, 1996, Oslo, Norway, “Folkets Hus” Congress Centre. Telenor R & D, 1996 [Google Scholar]
  14. Ben Zaken B, Zanzury T, Malka D, An 8-channel wavelength MMI Demultiplexer in slot waveguide structures. Materials (Basel). (2016) 9, 11881. https://doi.org/10.3390/ma9110881Nov. [NASA ADS] [CrossRef] [Google Scholar]
  15. Malka D, Peled A, Power splitting of 1×16 in multicore photonic crystal fibers. Appl. Surf. Sci. (2017) 417, 34–39. https://doi.org/10.1016/j.apsusc.2017.02.247 [NASA ADS] [CrossRef] [Google Scholar]
  16. Malka D, Cohen M, Turkiewicz J, Zalevsky Z, Optical micro-multi-racetrack resonator filter based on SOI waveguides. Photonics Nanostructures - Fundam. Appl (2015) 16, 16–23. https://doi.org/10.1016/j.photonics.2015.07.002 [NASA ADS] [CrossRef] [Google Scholar]
  17. Andrews NLP, et al.In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt. Express (2016) 24, 1314086. https://doi.org/10.1364/OE.24.014086Jun. [NASA ADS] [CrossRef] [Google Scholar]
  18. Treyz GV, Silicon Mach-Zehnder waveguide interferometers operating at 1.3 μm. Electron. Lett. (1991) 27, 2118. https://doi.org/10.1049/el:19910079 [NASA ADS] [CrossRef] [Google Scholar]
  19. Cortelazzo G, Lightner M, Simultaneous design in both magnitude and group-delay of IIR and FIR filters based on multiple criterion optimization. IEEE Trans. Acoust. (1984) 32, 5949–967. https://doi.org/10.1109/TASSP.1984.1164426Oct. [NASA ADS] [CrossRef] [Google Scholar]
  20. Palupi RR, Syahriar A, Lubis AH, Rahardjo S, Sardjono, simulation of Mach Zehnder Interleaver based thermo-optic effect in L-band range. RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics (2013) 269–272. https://doi.org/10.1109/RSM.2013.6706527 [Google Scholar]
  21. Okada Y, Tokumaru Y, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. (1984) 56, 2314–320. https://doi.org/10.1063/1.333965Jul. [CrossRef] [Google Scholar]
  22. Lee BG, Biberman A, Dong P, Lipson M, Bergman K, All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. (2008) 20, 10767–769. https://doi.org/10.1109/LPT.2008.921100May [NASA ADS] [CrossRef] [Google Scholar]
  23. Sun X, et al.Tunable silicon Fabry–Perot comb filters formed by Sagnac loop mirrors. Opt. Lett. (2013) 38, 4567. https://doi.org/10.1364/OL.38.000567Feb. [NASA ADS] [CrossRef] [Google Scholar]
  24. Tobing LYM, Lim DCS, Dumon P, Baets R, Chin M-K, Finesse enhancement in silicon-on-insulator two-ring resonator system. Appl. Phys. Lett., vol. 92, no. 10, p. 101122 (2008) Mar. [Google Scholar]
  25. Kessler T, et al.A Sub-40-mHz-Linewidth Laser Based on a Silicon Single-Crystal Optical Cavity (2012) [Google Scholar]
  26. Gosciniak J, Bozhevolnyi SI, Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci Rep (2013) 3, 1246–1260. https://doi.org/10.1038/srep01246May [NASA ADS] [CrossRef] [Google Scholar]
  27. Harris NC, et al.Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express (2014) 22, 910487. https://doi.org/10.1364/OE.22.010487May [NASA ADS] [CrossRef] [Google Scholar]
  28. Prabhathan P, Jing Z, Murukeshan VM, Huijuan Z, Shiyi C, Discrete and fine wavelength tunable Thermo-optic WSS for low power consumption C+L band Tunability. IEEE Photon. Technol. Lett. (2012) 24, 2152–154. https://doi.org/10.1109/LPT.2011.2174979Jan. [NASA ADS] [CrossRef] [Google Scholar]
  29. Pinhas H, Danan Y, Sinvani M, Danino M, Zalevsky Z, Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator. J. Eur. Opt. Soc. Publ (2017) 13, 13. https://doi.org/10.1186/s41476-016-0030-8Dec. [CrossRef] [Google Scholar]
  30. Soref RA, Bennett BR, Electrooptical effects in silicon. IEEE J. Quantum Electron. (1987) 23, 1123–129. https://doi.org/10.1109/JQE.1987.1073206Jan. [NASA ADS] [CrossRef] [Google Scholar]
  31. Cocorullo G, Rendina I, Thermo-optical modulation at 1.5 μm in silicon etalon. Electron. Lett. (1992) 28, 183–85. https://doi.org/10.1049/el:19920051Jan. [NASA ADS] [CrossRef] [Google Scholar]
  32. Della Corte FG, Montefusco ME, Moretti L, Rendina I, Cocorullo G, Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J. Appl. Phys. (2000) 88, 127115. https://doi.org/10.1063/1.1328062 [NASA ADS] [CrossRef] [Google Scholar]
  33. Grillanda S, et al.Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica (2014) 1, 3129. https://doi.org/10.1364/OPTICA.1.000129Sep. [NASA ADS] [CrossRef] [Google Scholar]
  34. Tinker MT, Lee J-B, Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Opt. Express (2005) 13, 187174. https://doi.org/10.1364/OPEX.13.007174Sep. [NASA ADS] [CrossRef] [Google Scholar]
  35. C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Light. Technol., vol. 21, no. 4, pp. 1089–1098, Apr. 2003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.