Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 31
Number of page(s) 10
DOI https://doi.org/10.1186/s41476-017-0059-3
Published online 30 October 2017
  1. Cerny P, Jelinkova H, Zverev PG, Basiev TT, Solid state lasers with Raman frequency conversion. Prog. Quantum Electron. (2004) 28, 113–143. https://doi.org/10.1016/j.pquantelec.2003.09.003 [NASA ADS] [CrossRef] [Google Scholar]
  2. Benabid F, Knight JC, Antonopoulos G, Russell P, Stimulated Raman scattering in hydrogen-filled hollow-Core photonic crystal fiber. Science (2002) 298, 399–402. https://doi.org/10.1126/science.1076408 [NASA ADS] [CrossRef] [Google Scholar]
  3. Yiou S, Delaye P, Rouvie A, Chinaud J, Frey R, Roosen G, Viale P, Février S, Roy P, Auguste JL, Blondy JM, Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Exp. (2005) 13, 4786–4791. https://doi.org/10.1364/OPEX.13.004786 [CrossRef] [Google Scholar]
  4. Boyd, RW: Stimulated Raman and Rayleigh-Wing Scattering. In: Nonlinear Optics (3rd edition), pp.473-510. Academic Press, Elsevier, Amserdam (2007) [Google Scholar]
  5. Agrawal, GP: Stimulated Raman scattering. In: Nonlinear Fiber Optics (4th edition), pp. 274-322. Academic Press, Elsevier, New-York (2010) [Google Scholar]
  6. Chraplyvy AR, Bridges TJ, Infrared generation by means of multiple-order stimulated Raman scattering in CCl4 and CbrCl3-filled hollow silica fibers. Opt. Lett. (1981) 6, 632–633. https://doi.org/10.1364/OL.6.000632 [NASA ADS] [CrossRef] [Google Scholar]
  7. Altkorn R, Koev I, Van Duyne RP, Litorja M, Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. (1997) 36, 8992–8998. https://doi.org/10.1364/AO.36.008992 [NASA ADS] [CrossRef] [Google Scholar]
  8. Ippen EP, Low-power quasi-cw Raman oscillator. Appl. Phys. Lett. (1970) 16, 303. https://doi.org/10.1063/1.1653204 [NASA ADS] [CrossRef] [Google Scholar]
  9. Stone J, Cw Raman fiber amplifier. Appl. Phys. Lett. (1975) 26, 163. https://doi.org/10.1063/1.88100 [NASA ADS] [CrossRef] [Google Scholar]
  10. Birks T, Roberts P, Russell P, Atkin D, Shepherd T, Full 2-d photonic bandgaps in silica/air structures. IEEE Electron. Lett. (1995) 31, 1941–1943. https://doi.org/10.1049/el:19951306 [CrossRef] [Google Scholar]
  11. Couny F, Benabid F, Roberts PJ, Light PS, Raymer MG, Generation and photonic guidance of multi-octave optical-frequency combs. Science (2007) 318, 1118. https://doi.org/10.1126/science.1149091 [CrossRef] [PubMed] [Google Scholar]
  12. Lebrun S, Delaye P, Frey R, Roosen G, High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber. Opt. Lett. (2007) 32, 337–339. https://doi.org/10.1364/OL.32.000337 [NASA ADS] [CrossRef] [Google Scholar]
  13. Phan Huy, MC, Delaye, P, Pauliat, G, Debord, B, Gérôme, F, Benabid, F and Lebrun, S: Stimulated Raman scattering with large Raman shifts with liquid core Kagome fibers. Paper presented at the EOS Annual Meeting 2014, Sep 2014, Berlin, Germany. <hal-01069915> [Google Scholar]
  14. Lebrun, S, Phan Huy, MC, Delaye, P and Pauliat, G: Efficient stimulated Raman scattering in hybrid liquid-silica fibers for wavelength conversion. Proc. SPIE 10021, Optical Design and Testing VII, 1002104 (October 31, 2016). doi:10.1117/12.2245431 [Google Scholar]
  15. Shan L, Pauliat G, Vienne G, Tong L, Lebrun S, Design of nanofibres for efficient stimulated Raman scattering in the evanescent field. J.Eur. Opt. Soc. (2013) 8, 13030. https://doi.org/10.2971/jeos.2013.13030 [NASA ADS] [CrossRef] [Google Scholar]
  16. Shan L, Pauliat G, Vienne G, Tong L, Lebrun S, Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibres. Appl. Phys. Lett. (2013) 102, 201110. https://doi.org/10.1063/1.4807170 [CrossRef] [Google Scholar]
  17. Schiemann S, Ubachs W, Hogervorst W, Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup. IEEE J. Quantum Electron. (1997) 33, 358–366. https://doi.org/10.1109/3.556004 [NASA ADS] [CrossRef] [Google Scholar]
  18. Kobyakov A, Sauer M, Chowdhury D, Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon. (2010) 2, 1–59. https://doi.org/10.1364/AOP.2.000001 [NASA ADS] [CrossRef] [Google Scholar]
  19. Su R, Zhou P, Wang X, Lü H, Xu X, Nanosecond pulse pumped, narrow linewidth all-fiber Raman amplifier with stimulated Brillouin scattering suppression. J. Opt. (2014) 16, 015201. https://doi.org/10.1088/2040-8978/16/1/015201 [NASA ADS] [CrossRef] [Google Scholar]
  20. Willems FW, Muys W, Leong JS, Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems. IEEE Photon. Technol. Lett. (1994) 6, 1476–1478. https://doi.org/10.1109/68.392206 [NASA ADS] [CrossRef] [Google Scholar]
  21. Yoshizawa N, Imai T, Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling. J. Lightw. Technol. (1993) 11, 1518–1522. https://doi.org/10.1109/50.249889 [NASA ADS] [CrossRef] [Google Scholar]
  22. Zhang L, Hu J, Wang J, Feng Y, Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star. Opt. Lett. (2012) 37, 4796–4798. https://doi.org/10.1364/OL.37.004796 [NASA ADS] [CrossRef] [Google Scholar]
  23. Engelbrecht R, Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions. J. Lightwave Technol. (2014) 32, 1689–1700. https://doi.org/10.1109/JLT.2014.2310214 [NASA ADS] [CrossRef] [Google Scholar]
  24. Kobyakov A, Kumar S, Chowdhury DQ, Ruffin AB, Sauer M, Bickham SR, Mishra R, Design concept for optical fibers with enhanced SBS threshold. Opt. Express (2005) 13, 5338–5346. https://doi.org/10.1364/OPEX.13.005338 [NASA ADS] [CrossRef] [Google Scholar]
  25. Lee H, Agrawal GP, Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings. Opt. Express (2003) 11, 3467–3472. https://doi.org/10.1364/OE.11.003467 [NASA ADS] [CrossRef] [Google Scholar]
  26. Shi J, Tang Y, Wei H, et al.Temperature dependence of threshold and gain coefficient of stimulated Brillouin scattering in water. Appl. Phys. B Lasers Opt. (2012) 108, 717. https://doi.org/10.1007/s00340-012-5142-2 [NASA ADS] [CrossRef] [Google Scholar]
  27. Ganot Y, Shrenkel S, Barmashenko BD, Bar I, Enhanced stimulated Raman scattering in temperature controlled liquid water. Appl. Phys. Lett. (2014) 105, 061107. https://doi.org/10.1063/1.4893001 [NASA ADS] [CrossRef] [Google Scholar]
  28. Krapchev, VB: Infrared laser system. US patent 5153887 (1991) [Google Scholar]
  29. Smith RG, Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt. (1972) 11, 2489–2494. https://doi.org/10.1364/AO.11.002489 [NASA ADS] [CrossRef] [Google Scholar]
  30. Menzel R, Eichler HJ, Temporal and spatial reflectivity of focused beams in stimulated Brillouin scattering for phase conjugation. Phys. Rev. A (1992) 46, 7139–7149. https://doi.org/10.1103/PhysRevA.46.7139 [NASA ADS] [CrossRef] [Google Scholar]
  31. Choi YS, Asymmetry of the forward and backward Raman gain coefficient at 1.54 μm in methane. Appl. Opt. (2001) 40, 1925–1930. https://doi.org/10.1364/AO.40.001925 [NASA ADS] [CrossRef] [Google Scholar]
  32. Menzel, R: Nonlinear Interactions of Light and Matter Without Absorption. In Photonics, linear and nonlinear interactions of laser light and matter, p.198. Springer, Heidelberg (2001) [Google Scholar]
  33. Boyd RW, Rzaewski K, Narum P, Noise initiation of stimulated Brillouin scattering. Phys. Rev. A (1990) 42, 5514. https://doi.org/10.1103/PhysRevA.42.5514 [CrossRef] [Google Scholar]
  34. Couny F, Benabid F, Light PS, Large-pitch kagome-structured hollow-core photonic crystal fiber. Opt. Lett. (2006) 31, 3574–3576. https://doi.org/10.1364/OL.31.003574 [NASA ADS] [CrossRef] [Google Scholar]
  35. Kedenburg S, Vieweg M, Gissibl T, Giessen H, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express (2012) 2, 1588–1611. https://doi.org/10.1364/OME.2.001588 [NASA ADS] [CrossRef] [Google Scholar]
  36. Hellwarth RW, Theory of stimulated Raman scattering. Phys. Rev. (1963) 130, 1850–1852. https://doi.org/10.1103/PhysRev.130.1850 [NASA ADS] [CrossRef] [Google Scholar]
  37. Griffiths JE, Raman-scattering cross-sections in strongly interacting liquid-systems - CH3OH, C2H5OH, I-C3H7OH, (CH3)2CO, H2O, and D2O. J. Chem. Phys. (1974) 60, 2556. https://doi.org/10.1063/1.1681398 [NASA ADS] [CrossRef] [Google Scholar]
  38. Uchida N, Elastooptic coefficient of liquids determined by ultrasonic light diffraction method. Jpn. J. Appl. Phys. (1968) 7, 1259–1266. https://doi.org/10.1143/JJAP.7.1259 [NASA ADS] [CrossRef] [Google Scholar]
  39. Tong J, Povey MJW, Zou X, Ward B, Oates CP, Speed of sound and density of ethanol-water mixture across the temperature range 10 to 50 degrees Celsius. J. Phys. Conf. Ser. (2011) 279, 012023. https://doi.org/10.1088/1742-6596/279/1/012023 [NASA ADS] [CrossRef] [Google Scholar]
  40. Xu J, Ren X, Gong W, Dai R, Liu D, Measurement of the bulk viscosity of liquid by Brillouin scattering. Appl. Opt. (2003) 42, 6704–6709. https://doi.org/10.1364/AO.42.006704 [NASA ADS] [CrossRef] [Google Scholar]
  41. Nozdrev VF, The viscosities of ethanol-Cyclohexane mixtures. Zh.Fiz.Khim. (1975) 49, 548–549. [Google Scholar]
  42. Hirai N, Eyring E, Bulk viscosity of liquids. J. Appl. Phys. (2016) 29, 810. https://doi.org/10.1063/1.1723290 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.