Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 30
Number of page(s) 16
Published online 27 October 2017
  1. Meijerink A, Roeloffzen CGH, Meijerink R, Zhuang LM, Marpaung DAI, Bentum MJ, Burla M, Verpoorte J, Jorna P, Hulzinga A, van Etten W, Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas-part I: design and performance analysis. J. Lightw. Technol (2010) 28, 13–18. [NASA ADS] [CrossRef] [Google Scholar]
  2. Adler, CO, Van Alen, DJ, Carson, RS, Morrison, AF, Lavelle, ME, Anderson, ED, Onorati, GR, Cunningham, JK: Airborne reception of data and direct broadcast TV using a phased array antenna. In: Proc. IEEE Int. Conf. on Phased Array Sys. and Tec., pp. 223–226, Dana Point (2000). [Google Scholar]
  3. Marpaung, D, Zhuang, L, Burla, M, Roeloffzen, C, Verpoorte, J, Schippers, H, Hulzinga, A, Jorna, P, Beeker, W, Leinse, A, Heideman, R, Noharet, B, Wang, Q, Sanadgol, B, Baggen, R: Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications. In: Proc. 5th European Conf. on Antennas and Prop. (EuCAP), pp. 2623–2627, Rome (2011). [Google Scholar]
  4. Fikar, S, Scholtz, AL: Novel low-cost antenna array for vehicular reception of Ku-band satellite television. In: IEEE Antennas and Prop. Society Int. Symp. (AP-S), pp. 1–4, San Diego (2008). [Google Scholar]
  5. Baggen, R, Vaccaro, S, del Rio, DL: Design considerations for compact mobile Ku-band satellite terminals. In: Proc. of the Second. European Conf. Antennas and Prop. (EuCAP), pp. 1–5, Edinburgh (2007). [Google Scholar]
  6. Yoshiyuki F, Masaki S, Seiji N, Shinichi T, Yutaka O, Eiji W, Manabu S, Yukio T, Tetsuya K, Development of helicopter satellite communication system for the disaster information transmission. IEICE Trans. Commun (2008) J91-B, 121611–1619. [Google Scholar]
  7. Skolnik, M: Introduction to Radar Systems. 2nd ed. McGraw-Hill (1962). [Google Scholar]
  8. VanBlaricum, ML: Photonic antenna reconfiguration: a status survey. In: Proc. of the SPIE, Photonics and Radio Freq. II. vol. 3463, pp. 180–189, San Diego. [Google Scholar]
  9. Ayotte, S, Babin, A, Poulin, P, Poulin, M, Jeanneau, A, Picard, MJ, Poulin, D, Davidson, CA, Aube, xM, Alexandre, I, Costin, F, Pelletier, F, Cliche, JF, Mtu, Te, Shillue, B: Laser synthesizer of the ALMA telescope: design and performance. In: Proc. IEEE Int. Topical Meeting Microwave Photonics (MWP), pp. 249–252, Montreal (2010). [Google Scholar]
  10. Payne, JM, Shillue, WP: Photonic techniques for local oscillator generation and distribution in millimeter-wave radio astronomy. In: Proc. IEEE Int. Topical Meeting Microwave Photonics (MWP), pp. 9–12, Awaji (2002). [Google Scholar]
  11. Reul N, Tenerelli J, Chapron B, Vandemark D, Quilfen Y, Kerr Y, SMOS satellite l-band radiometer: a new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res (2012) 117, C21–24. [Google Scholar]
  12. Chenakin A, Phase noise reduction in microwave oscillators. Microwave J (2009) 52, 10124–140. [Google Scholar]
  13. Camatel S, Ferrero V, Phase noise power spectral density measurement of narrow linewidth cw lasers using an optical phase-locked loop. IEEE Photon. Technol. Lett (2006) 18, 232529–2531. [NASA ADS] [CrossRef] [Google Scholar]
  14. Bernhardi EH, Khan MRH, Roeloffzen CGH, van Wolferen HAGM, Wörhoff K, de Ridder RM, Pollnau M, Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Er3+ distributed-feedback waveguide laser. Opt. Lett (2012) 37, 2181–183. [NASA ADS] [CrossRef] [Google Scholar]
  15. He X, Fang X, Liao C, Wang DN, Sun J, A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity. Opt. Exp (2009) 17, 243–21781. [Google Scholar]
  16. Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar PH, Roskos HG, Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range. Opt. Exp (2010) 18, 88621–8629. [CrossRef] [Google Scholar]
  17. Tani M, Morikawa O, Matsuura S, Hangyo M, Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers. Semicond. Sci. Technol (2005) 20, S151–S163. [NASA ADS] [CrossRef] [Google Scholar]
  18. Yamada M, Sakuda K, Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. Appl. Opt (1987) 26, 163474–3478. [NASA ADS] [CrossRef] [Google Scholar]
  19. Xia L, Shum P, Wang Y, Cheng TH, Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber bragg grating filter. IEEE Photon. Technol. Lett (2006) 18, 202162–2164. [NASA ADS] [CrossRef] [Google Scholar]
  20. Bernhardi EH, van Wolferen HAGM, Agazzi L, Khan MRH, Roeloffzen CGH, Wörhoff K, Pollnau M, de Ridder RM, Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Opt. Lett (2010) 35, 142394–2396. [NASA ADS] [CrossRef] [Google Scholar]
  21. Huang YC, Lin YY, Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators. J. Opt. Soc. Am. B (2004) 21, 21777–790. [NASA ADS] [CrossRef] [Google Scholar]
  22. Yang J, Dalfsen K, Wörhoff K, Ay F, Pollnau M, High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm. Appl. Phys. B (2010) 101, 119–127. [NASA ADS] [CrossRef] [Google Scholar]
  23. Bo L, Meng J, Swee Chuan T, Ping S, Tunable microwave generation using a phase-shifted chirped fiber bragg grating. IEEE Photon. Technol. Lett (2011) 23, 181292–1294. [NASA ADS] [CrossRef] [Google Scholar]
  24. Brunel M, Amon A, Vallet M, Dual-polarization microchip laser at 1.53 um. Opt. Lett (2005) 30, 182418–2420. [NASA ADS] [CrossRef] [Google Scholar]
  25. Khan, MRH, Burla, M, Roeloffzen, CGH, Marpaung, DAI: Phase noise analysis of an RF local oscillator signal generated by optical heterodyning of two lasers. In: Proc. of the 14th Annual Symp. of the IEEE Photonics Benelux Chapter, pp. 161–164, Brussels (2009). [Google Scholar]
  26. Lennartz C, van Etten W, van Osch T, Huijskens F, Laser spectra measured with the recirculating self heterodyne technique. J. Opt. Commun (1996) 17, 4138–146. [NASA ADS] [CrossRef] [Google Scholar]
  27. Ip E, Lau APT, Barros DJF, Kahn JM, Coherent detection in optical fiber systems. Opt. Exp (2008) 16, 2753–791. [NASA ADS] [CrossRef] [Google Scholar]
  28. Agrawal GP, Fiber-Optic Communication Systems (1997) New YorkWiley [Google Scholar]
  29. Digital video broadcasting (DVB): Interaction channel for satellite distribution systems; guidelines for the user (EN 301 790). Technical report TR101790, V 1.1.1, European Telecommunications Standard Institute (ETSI), September 2001. [Google Scholar]
  30. Gardner F, Phaselock Techniques (2005) New YorkWiley-Blackwell [CrossRef] [Google Scholar]
  31. Yang DH, Wang YQ, Preliminary-results of an optically pumped cesium beam frequency standard at peking university. IEEE Trans. Instrum. Meas (1991) 40, 61000–1002. [NASA ADS] [CrossRef] [Google Scholar]
  32. Casini E, Gaudenzi RD, Ginesi A, DVB-S2 modem algorithms design and performance over typical satellite channels. Int. J. Satellite Commun. and Net (2004) 22, 3281–318. [CrossRef] [Google Scholar]
  33. Stace T, Luiten AN, Kovacich RP, Laser offset-frequency locking using a frequency-to-voltage converter. Measurement Sci. Technol (1998) 9, 91635–1637. [NASA ADS] [CrossRef] [Google Scholar]
  34. Castrillo A, Fasci E, Galzerano G, Casa G, Laporta P, Gianfrani L, Offset-frequency locking of extended-cavity diode lasers for precision spectroscopy of water at 1.38 μm. Opt. Exp (2010) 18, 2121851–21860. [NASA ADS] [CrossRef] [Google Scholar]
  35. Schunemann U, Engler H, Grimm R, Weidemuller M, Zielonkowski M, Simple scheme for tunable frequency offset locking of two lasers. Rev. Sci. Instr (1999) 70, 1242–243. [Google Scholar]
  36. Chris Toumazo, BG, Moschytz, GS, (Eds): Trade-Offs in Analog Circuit Design: The Designer’s Companion, 2nd ed. Kluwer (2004). [Google Scholar]
  37. Stephens, DR: Phase-locked loops for wireless communications: digital, analog, and optical implementations. 2nd ed. Kluwer (2001). [Google Scholar]
  38. Ryu HY, Lee SH, Suh HS, Widely tunable external cavity laser diode injection locked to an optical frequency comb. IEEE Photon. Technol. Lett (2010) 22, 141066–1068. [NASA ADS] [CrossRef] [Google Scholar]
  39. Rubiola, E: Phase Noise and Frequency Stability in Oscillators (Cripps, SC, ed.)Cambridge University Press (2008). [Google Scholar]
  40. Sprenger B, Zhang J, Lu ZH, Wang LJ, Atmospheric transfer of optical and radio frequency clock signals. Opt. Lett (2009) 34, 7965–967. [NASA ADS] [CrossRef] [Google Scholar]
  41. Ning B, Zhang SY, Hou D, Wu JT, Li ZB, Zhao JY, High-precision distribution of highly stable optical pulse trains with 8.8×10−19 instability. Sci. Rep. (2014) 4, 5109. [NASA ADS] [CrossRef] [Google Scholar]
  42. Narbonneau F, Lours M, Bize S, Clairon A, Santarelli G, Lopez O, Daussy C, Amy-Klein A, Chardonnet C, High resolution frequency standard dissemination via optical fiber metropolitan network. Rev. Sci. Instrum (2006) 77, 6064701–064701–8. [NASA ADS] [CrossRef] [Google Scholar]
  43. Leeson DB, A simple model of feedback oscillator noise spectrum. Proc. IEEE (1966) 54, 2329–330. [CrossRef] [Google Scholar]
  44. Chorti A, Brookes M, A spectral model for RF oscillators with power-law phase noise. IEEE Trans. Circ. Syst. I (2006) 53, 91989–1999. [CrossRef] [Google Scholar]
  45. Winter, A, Schmuser, P, Schlarb, H, Ilday, F, Kim, J-W, Chen, J, Katner, F: Phase noise characteristics of fiber lasers as potential ultra-stable master oscillators. In: Proc. of the Particle Accelerator Conference, PAC, pp. 2521–2523, Knoxville (2005). [Google Scholar]
  46. Winter, A, Schmuser, P: High-precision laser master oscillators for optical timing distribution systems in future light sources. In: Proc. of 10th European Particle Accelerator Conference, p. 1064, Edinburgh (2006). [Google Scholar]
  47. Marpaung D, Roeloffzen C, Leinse A, Hoekman M, A photonic chip based frequency discriminator for a high performance microwave photonic link. Opt. Exp (2010) 18, 2627359–27370. [CrossRef] [Google Scholar]
  48. Pillet G, Morvan L, Brunel M, Bretenaker F, Dolfi D, Vallet M, Huignard JP, Le Floch A, Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals. J. Lightw. Technol (2008) 26, 13-162764–2773. [NASA ADS] [CrossRef] [Google Scholar]
  49. Alouini M, Benazet B, Vallet M, Brunel M, Di Bin P, Bretenaker F, Le Floch A, Thony P, Offset phase locking of Er,Yb:glass laser eigenstates for RF photonics applications. IEEE Photon. Technol. Lett (2001) 13, 4367–369. [NASA ADS] [CrossRef] [Google Scholar]
  50. Gross MC, Callahan PT, Clark TR, Novak D, Waterhouse RB, Dennis ML, Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength brillouin fiber laser. Opt. Exp (2010) 18, 1313321–13330. [NASA ADS] [CrossRef] [Google Scholar]
  51. Parker JS, Bhardwaj A, Binetti PRA, Hung Y-J, Coldren LA, Monolithically integrated gain-flattened ring mode-locked laser for comb-line generation. IEEE Photon. Technol. Lett (2012) 24, 2131–133. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.