Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 22
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-017-0050-z
Published online 09 September 2017
  1. Betti R, Hurricane OA, Inertial-confinement fusion with lasers [J]. Nat. Phys. (2016) 12, 5435–448. https://doi.org/10.1038/nphys3736 [CrossRef] [Google Scholar]
  2. Pohl, M., Börret, R.: Simulation of mid-spatials from the grinding process [J]. J. Eur. Opt. Society-Rapid Publ. 11, (2016) [Google Scholar]
  3. Almeida, R., Börret, R., Rimkus, W., et al.: Polishing material removal correlation on PMMA–FEM simulation [J]. J. Eur. Opt. Society-Rapid Publ. 11, (2016) [Google Scholar]
  4. Wang CJ, Cheung CF, Ho LT, et al.A novel multi-jet polishing process and tool for high-efficiency polishing [J]. Int. J. Mach. Tools Manuf. (2017) 115, 60–73. https://doi.org/10.1016/j.ijmachtools.2016.12.006 [CrossRef] [Google Scholar]
  5. Arnold, T., Boehm, G., Paetzelt, H.: New freeform manufacturing chain based on atmospheric plasma jet machining [J]. J. Eur. Opt. Society-Rapid Publ. 11, (2016) [Google Scholar]
  6. Tamkin JM, Milster TD, Effects of structured mid-spatial frequency surface errors on image performance [J]. Appl. Opt. (2010) 49, 336522–6536. https://doi.org/10.1364/AO.49.006522 [NASA ADS] [CrossRef] [Google Scholar]
  7. Hu H, Dai Y, Peng X, Restraint of tool path ripple based on surface error distribution and process parameters in deterministic finishing [J]. Opt. Express (2010) 18, 2222973–22981. https://doi.org/10.1364/OE.18.022973 [NASA ADS] [CrossRef] [Google Scholar]
  8. Wang C, Yang W, Ye S, et al.Restraint of tool path ripple based on the optimization of tool step size for sub-aperture deterministic polishing [J]. Int. J. Adv. Manuf. Technol. (2014) 75, 9–121431–1438. [CrossRef] [Google Scholar]
  9. Dai YF, Shi F, Peng XQ, et al.Restraint of mid-spatial frequency error in magneto-rheological finishing (MRF) process by maximum entropy method [J]. Sci. China Ser. E: Technol. Sci. (2009) 52, 103092–3097. https://doi.org/10.1007/s11431-009-0316-9 [CrossRef] [Google Scholar]
  10. Wang C, Wang Z, Xu Q, Unicursal random maze tool path for computer-controlled optical surfacing. Appl. Opt. (2015) 54, 3410128–10136. https://doi.org/10.1364/AO.54.010128Dec 1 [NASA ADS] [CrossRef] [Google Scholar]
  11. Yu, G., Li, H., Walker, D.: Removal of mid spatial-frequency features in mirror segments [J]. J. Eur. Opt. Society-Rapid Publ. 6, (2011) [Google Scholar]
  12. Dunn CR, Walker DD, Pseudo-random tool paths for CNC sub-aperture polishing and other applications [J]. Opt. Express (2008) 16, 2318942–18949. https://doi.org/10.1364/OE.16.018942 [CrossRef] [Google Scholar]
  13. Walker, D.D., Yu, G., Bibby, M., et al.: Robotic automation in computer controlled polishing [J]. J. Eur. Opt. Society-Rapid Publ. 11, (2016) [Google Scholar]
  14. Zhang X, Yu J, Zhang Z, et al.Analysis of residual fabrication errors for computer controlled polishing aspherical mirrors [J]. Opt. Eng. (1997) 36, 123386–3391. https://doi.org/10.1117/1.601578 [NASA ADS] [CrossRef] [Google Scholar]
  15. Cheng HB, Independent variables for optical surfacing systems [M] (2014) BerlinSpringer-Verlag76. https://doi.org/10.1007/978-3-642-45355-7 [Google Scholar]
  16. Spaeth ML, Manes KR, Widmayer CC, et al.The National Ignition Facility wavefront requirements and optical architecture [C]. SPIE (2004) 5341, 25–42. [Google Scholar]
  17. Wang C, Yang W, Wang Z, et al.Dwell-time algorithm for polishing large optics [J]. Appl. Opt. (2014) 53, 214752–4760. https://doi.org/10.1364/AO.53.004752 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.