Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 23
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-017-0051-y
Published online 13 September 2017
  1. Halas, NJ, “Plasmonics: An Emerging Field Fostered by Nano Letters,” Nano Lett. 10(10), 3816–3822(2010) [Google Scholar]
  2. Tame MS, McEnery KR, Ozdemir SK, Lee J, Maier SA, Kim MS, Quantum plasmonics. Nat. Phys. (2013) 9, 329–340. https://doi.org/10.1038/nphys2615 [CrossRef] [Google Scholar]
  3. Brongersma ML, Halas NJ, Nordlander P, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. (2015) 10, 25–34. https://doi.org/10.1038/nnano.2014.311 [NASA ADS] [CrossRef] [Google Scholar]
  4. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ, Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials (2016) 1, 1–16. https://doi.org/10.1038/natrevmats.2016.21 [NASA ADS] [Google Scholar]
  5. Zhang JX, Zhang LD, Nanostructures for surface plasmons. Adv. Opt. Photon. (2012) 4, 157–321. https://doi.org/10.1364/AOP.4.000157 [NASA ADS] [CrossRef] [Google Scholar]
  6. Hobbs RG, Manfrinato VR, Yang YJ, Goodman SA, Zhang LH, Stach EA, Berggren KK, High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures. Nano Lett. (2016) 16, 4149–4157. https://doi.org/10.1021/acs.nanolett.6b01012 [NASA ADS] [CrossRef] [Google Scholar]
  7. Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR, Universal dispersion of surface plasmons in flat nanostructures. Nat. Commun. (2014) 5, 3604. [NASA ADS] [CrossRef] [Google Scholar]
  8. Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U, Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett. (2014) 14, 4810–4815. https://doi.org/10.1021/nl502027r [NASA ADS] [CrossRef] [Google Scholar]
  9. Imura K, Ueno K, Misawa H, Okamoto H, McArthur D, Hourahine B, Papoff F, Plasmon modes in single gold nanodiscs. Opt. Express (2014) 22, 12189–12199. https://doi.org/10.1364/OE.22.012189 [CrossRef] [Google Scholar]
  10. Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR, Dark plasmonic breathing modes in silver nanodisks. Nano Lett. (2012) 12, 5780–5783. https://doi.org/10.1021/nl3030938 [NASA ADS] [CrossRef] [Google Scholar]
  11. Krug, MK, Reisecker, M, Hohenau, A, Ditlbacher, H, trugler, A, Hohenester, U, and Krenn, JR: “Probing plasmonic breathing modes optically,” Applied Physics Letters 105, 171103 (2014) [Google Scholar]
  12. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P, Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. (2008) 8, 3983–3988. https://doi.org/10.1021/nl802509r [NASA ADS] [CrossRef] [Google Scholar]
  13. Hao F, Larsson EM, Ali TA, Sutherland DS, Nordlander P, Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. (2008) 458, 262–266. https://doi.org/10.1016/j.cplett.2008.04.126 [NASA ADS] [CrossRef] [Google Scholar]
  14. Liu MZ, Lee TW, Gray SK, Sionnest PG, Pelton M, Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys. Rev. Lett. (2009) 102, 107401. https://doi.org/10.1103/PhysRevLett.102.107401 [CrossRef] [Google Scholar]
  15. Chen HY, He CL, Wang CY, Lin MH, Mitsui D, Eguchi M, Teranishi T, Gwo S, Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano (2011) 10, 8223–8229. https://doi.org/10.1021/nn2029007 [CrossRef] [Google Scholar]
  16. D. Solis Jr, Willingham, BSL L, Nauert, LS, Slaughter, J, Olson, P, Swanglap, A, Paul, WS, Chang, and Link, S: “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Letter 12, 1349–1353 (2012) [Google Scholar]
  17. Hafele V, Trugler A, Hohenester U, Hohenau A, Leitner A, Krenn JR, Local refractive index sensitivity of gold nanodisks. Opt. Express (2015) 23, 10293–10300. https://doi.org/10.1364/OE.23.010293 [CrossRef] [Google Scholar]
  18. Donner JS, Baffou G, McCloskey D, Quidant R, Plasmon-assisted optofluidics. ACS Nano (2011) 7, 5457–5462. https://doi.org/10.1021/nn200590u [CrossRef] [Google Scholar]
  19. Righini M, Volpe G, Girard C, Petrov D, Quidant R, Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. (2008) 100, 186804. https://doi.org/10.1103/PhysRevLett.100.186804 [Google Scholar]
  20. Paramon JS, Bosch S, Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano (2012) 9, 8415–8423. https://doi.org/10.1021/nn303243p [CrossRef] [Google Scholar]
  21. Gomez DE, Teo ZQ, Altissimo M, Davis TJ, Earl S, Roberts A, The dark side of plasmonics. Nano Lett. (2013) 13, 3722–3728. https://doi.org/10.1021/nl401656e [NASA ADS] [CrossRef] [Google Scholar]
  22. Yanai A, Grajower M, Lerman GM, Hentschel M, Giessen H, Levy U, Plasmonic oligomers under radially and azimuthally polarized light excitation. ACS Nano (2014) 8, 4969–4974. https://doi.org/10.1021/nn501031t [CrossRef] [Google Scholar]
  23. Sakai K, Nomura K, Yamamoto T, Sasaki K, Excitation of multipole plasmons by optical vortex beams. Sci Rep (2015) 5, 8431. https://doi.org/10.1038/srep08431 [NASA ADS] [CrossRef] [Google Scholar]
  24. Andrews, DL, Babiker, M: Eds, the Angular Momentum of Light (Cambridge University Press, 2013) [Google Scholar]
  25. Zhan QW, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. (2009) 1, 1–57. https://doi.org/10.1364/AOP.1.000001 [CrossRef] [Google Scholar]
  26. Herrero RM, Mejias PM, Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane. Opt. Express (2008) 16, 9021–9033. https://doi.org/10.1364/OE.16.009021 [NASA ADS] [CrossRef] [Google Scholar]
  27. Kotlyar VV, Kovalev AA, Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. J. Opt. Soc. Am. A (2010) 27, 372–380. https://doi.org/10.1364/JOSAA.27.000372 [NASA ADS] [CrossRef] [Google Scholar]
  28. Johnson PB, Christy RW, Optical constant of nobel metals. Phys. Rev. B (1972) 6, 4370–4379. https://doi.org/10.1103/PhysRevB.6.4370 [CrossRef] [Google Scholar]
  29. Joe YS, Satanin AM, Kim CS, Classical analogy of Fano resonances. Phys. Scr. (2006) 74, 259–266. https://doi.org/10.1088/0031-8949/74/2/020 [CrossRef] [Google Scholar]
  30. Maier, SA: Plasmonics: Fundamentals and Applications (Springer, 2007) [Google Scholar]
  31. Dionne JA, Sweatlock LA, Atwater HA, Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B (2005) 72, https://doi.org/10.1103/PhysRevB.72.075405 [CrossRef] [Google Scholar]
  32. Wozniak P, Banzer P, Leuchs G, Selective switching of individual multipole resonances in single dielectric nanoparticles. Laser Photonics Rev. (2015) 9, 231–240. https://doi.org/10.1002/lpor.201400188 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.