Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 17
Number of page(s) 4
DOI https://doi.org/10.1186/s41476-017-0045-9
Published online 01 June 2017
  1. Donoho DL, Compressed sensing. IEEE Trans. Inf. Theory (2006) 52, 41289–1306. https://doi.org/10.1109/TIT.2006.871582 [CrossRef] [Google Scholar]
  2. Candes EJ, Wakin MB, An introduction to Compressive sampling. IEEE Signal Process. Mag. (2008) 25, 221–30. https://doi.org/10.1109/MSP.2007.914731 [CrossRef] [Google Scholar]
  3. Chan, W.L., Moravec, M.L., Baraniuk, R.G., et al.: Terahertz imaging with compressed sensing and phase retrieval. Opt. Lett. 33(9), 974–976 (2008) [Google Scholar]
  4. Arguello H, Arce GR, Colored Coded Aperture Design by Concentration of Measure in Compressive Spectral Imaging. IEEE Trans. Image Process. (2014) 23, 41896–1908. https://doi.org/10.1109/TIP.2014.2310125 [NASA ADS] [CrossRef] [Google Scholar]
  5. Duarte, M.F., Davenport, M.A., Takhar, D., et al.: Single-Pixel Imaging via Compressive Sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008) [Google Scholar]
  6. Xiao, L.L., Liu, K., Han, D.P., et al.: A compressed sensing approach for enhancing infrared imaging resolution. Opt. Laser Technol. 44(8), 2354–2360 (2012) [Google Scholar]
  7. DeVore RA, Deterministic constructions of compressed sensing matrices. J. Complex (2007) 23, 4918–925. https://doi.org/10.1016/j.jco.2007.04.002 [CrossRef] [Google Scholar]
  8. Li SX, Ge GN, Deterministic construction of sparse sensing matrices via finite geometry. IEEE Trans. Signal Process. (2014) 62, 112850–2859. https://doi.org/10.1109/TSP.2014.2318139 [CrossRef] [Google Scholar]
  9. Calderbank R, Howard S, Jafarpour S, Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel. Top Sign Process. (2010) 4, 2358–374. https://doi.org/10.1109/JSTSP.2010.2043161 [NASA ADS] [CrossRef] [Google Scholar]
  10. Lu WZ, Xia ST, Construction of ternary matrices with small coherence for compressed sensing. Electron. Lett. (2016) 52, 6447–448. https://doi.org/10.1049/el.2015.3447 [NASA ADS] [CrossRef] [Google Scholar]
  11. Yao, S., Wang, T., Shen, W., Pan, S., Chong, Y.: Research of incoherence rotated chaotic measurement matrix in compressed sensing. Multimedia Tools Appl. 1–19 (2015) [Google Scholar]
  12. Huang T, Fan YZ, Zhu M, Symmetric Toeplitz-Structured Compressed Sensing Matrices. Sens. Imaging. (2015) 16, 11–9. https://doi.org/10.1007/s11220-014-0103-y [NASA ADS] [CrossRef] [Google Scholar]
  13. Zhao, M., Liu, J., Chen, S., Kang, C., Xu, W.: Single-pixel imaging with deterministic complex-valued sensing matrices. J. Eur. Opt. Soc. 10, 15041 (2015) [Google Scholar]
  14. Loan, C.F.V.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1-2), 85–100 (2000) [Google Scholar]
  15. Edelman A, Strang G, Pascal Matrices. Am Math Mon (2004) 111, 3189–197. https://doi.org/10.2307/4145127 [CrossRef] [Google Scholar]
  16. Candes EJ, Tao T, Decoding by linear programming. IEEE Trans. Inf. Theory (2005) 51, 124203–4215. https://doi.org/10.1109/TIT.2005.858979 [CrossRef] [Google Scholar]
  17. Candes EJ, The restricted isometry property and its implications for compressed sensing. Comp. Rendus Math. Acad. Sci. Paris. (2008) 346, 9–10589–592. https://doi.org/10.1016/j.crma.2008.03.014 [CrossRef] [Google Scholar]
  18. Tropp JA, Gilbert AC, Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory (2007) 53, 124655–4666. https://doi.org/10.1109/TIT.2007.909108 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.