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Abstract

Background: The construction of measurement matrix becomes a focus in compressed sensing (CS) theory.
Although random matrices have been theoretically and practically shown to reconstruct signals, it is still necessary
to study the more promising deterministic measurement matrix.

Methods: In this paper, a new method to construct a simple and efficient deterministic measurement matrix,
sparse kronecker pascal (SKP) measurement matrix, is proposed, which is based on the kronecker product and the
pascal matrix.

Results: Simulation results show that the reconstruction performance of the SKP measurement matrices is superior
to that of the random Gaussian measurement matrices and random Bernoulli measurement matrices.

Conclusions: The SKP measurement matrix can be applied to reconstruct high-dimensional signals such as natural
images. And the reconstruction performance of the SKP measurement matrix with a proper pascal matrix
outperforms the random measurement matrices.
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Background
Compressed sensing (CS) theory is a novel sampling
scheme, which indicates that a sparse signal can be re-
covered from much fewer samples than conventional
method [1, 2]. The sampling and the compression pro-
cedure are completed by the linear projection in CS. In
matrix notation, it can be expressed as

y ¼ Φx ð1Þ

where x ∈ℝN is the original signal, Φ is an M ×N(M≪N)
measurement matrix, y ∈ℝM is the measurement vector. x
is said to be K-sparse if ‖x‖0 ≤K. CS theory asserts that if
the measurement matrix Φ satisfies some conditions, the
signal x can be recovered from measurements y without
distortion.
The emergence of CS provides a new inspiration for

optical imaging. Actually most of the nature images are
compressible in terms of some sparsity basis, such as
Discrete cosine transform (DCT) and Discrete wavelet
transform (DWT). The compressibility of the real-word
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images shows the potential for optical compressive im-
aging. In the past few years, CS technique has made
great progress in many research fields, which include
terahertz compressive imaging [3], spectral imaging [4],
single pixel imaging [5] and infrared imaging [6]. Some
optical imaging applications have been implemented in
specific physical experiments.
Measurement matrix construction is a crucial problem

in CS. The measurements obtained by measurement
matrix are related to whether the signal can be accurately
reconstructed. If there is enough information within the
measurements, the signal can be recovered with high
probability. Random measurement matrices are proved to
have the merit of universality but suffer from several
shortcomings. Firstly, random measurement matrices
consume lots of storage resources. Secondly, there is no
feasible algorithm to verify whether the random matrix
satisfies the requirement as a measurement matrix [7, 8].
The research on deterministic sampling can be tracked
back to the binary matrices via polynomials over finite
field [9]. The deterministic measurement matrix has the
superiority in physical implementation and the advantage
of saving storage space. Therefore, many researches on
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the deterministic measurement matrix construction have
been carried out. Lu introduced a construction of ternary
matrices with small coherence [10]. Yao presented a novel
simple and efficient measurement matrix named incoher-
ence rotated chaotic matrix [11]. Huang proposed a
symmetric Toeplitz measurement matrix [12]. Zhao intro-
duced a deterministic complex measurement matrix to
sample the signals in the single pixel imaging [13].
In this paper, we propose a new construction method

of deterministic measurement matrix, termed sparse
kronecker pascal (SKP) measurement matrix. The SKP
measurement matrix combines the properties of the
kronecker product and the pascal matrix. It is suitable
for the reconstruction of natural images, which are usu-
ally high-dimensional signals. Simulations and analyses
confirm that the SKP measurement matrices can recon-
struct the natural images with a better performance.

Methods
The SKP measurement matrix construction
In mathematics, the kronecker product is an operation
on two matrices of arbitrary size resulting in a block
matrix [14].
Definition: If A is an m × n matrix, B is a p × q matrix,

then the kronecker product A⊗ B is the mp × nq block
matrix. It can be expressed as

A⊗B ¼
a11B⋯a1nB
⋮ ⋱ ⋮

am1B⋯amnB

2
4

3
5 ð2Þ

Pascal matrix is a symmetric positive definite matrix
with integer entries taken from pascal’s triangle [15].
The 4 × 4 truncations of these are shown below

P4 ¼
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

2
664

3
775 ð3Þ

it can be seen clearly that the entries near the diagonal
of the pascal matrix increase with a geometric growth. It
is effective to achieve sparse purpose by the kronecker
product. Based on the pascal matrix and the kronecker
product, we present the SKP matrix

Η ¼ k � I⊗P ¼ k

P 0 ⋯ ⋯ 0
0 ⋱ 0 ⋯ ⋮
⋮ 0 P 0 ⋮
⋮ ⋯ 0 ⋱ 0
0 ⋯ ⋯ 0 P

2
66664

3
77775 ð4Þ

where H is the proposed SKP matrix, k signifies the
scaling factor, I represents an identity matrix, P denotes
the pascal matrix. Suppose that I is a q × q matrix, P is
a p × p matrix, then H is a pq × pq matrix. We can get an
m × n SKP measurement matrix Φ by selecting appropri-
ately m rows from H for CS, here n = p × q, m&lt; n.
Now we describe how to select right rows from H to

construct various dimensional measurement matrices.
The selection method is to follow the principle of equal
interval, which can improve the irrelevance between the
selected row vectors. From the first row, we can con-
struct the measurement matrix of multiple dimensions
by choosing different interval lengths. If the interval
length d = 2, p = 4, q = 64, the size of the SKP measure-
ment matrix is 128 × 256. Similarly, when the interval
length d = 3, the size becomes 86 × 256.
In CS, the measurement matrix must satisfy certain

conditions. Candes and Tao propose a criterion named
restricted isometry property (RIP) [16, 17]. A measure-
ment matrix is said to satisfy the RIP of order K if there
exists a constant δK ∈ (0, 1) such that

1−δKð Þ xk k22≤ Φxk k22≤ 1þ δKð Þ xk k22 ð5Þ

for any K-sparse vector x. It is similar to that any K
column vectors of the measurement matrix Φ are
linearly independent. The RIP criterion guarantees that
the sparse signal can be recovered exactly from the
measurements.
The SKP measurement matrix is a particular matrix.

The determinant of every Pn is 1 and the determinant of
SKP matrix H is k1 (k1 ≠ 0), which signify that any col-
umn vectors or row vectors from Pn and H are linearly
independent. Therefore the SKP measurement matrix Φ
is also a linear independent system between row vectors.
The correlation among the resulting measurements is
reduced, and the unique distribution of the SKP meas-
urement matrix facilitates its implementation.

Results and discussion
In this part, we conduct numerical experiments to valid-
ate the performance of the SKP measurement matrix.
The test images are of size 256 × 256 pixels. Orthogonal
matching pursuit (OMP) algorithm is chosen as the
recovery algorithm [18]. The sparsity basis Ψ is selected
as the DCT matrix. Reconstruction processes are imple-
mented in MATLAB R2016a. The size of the pascal
matrix is 4 × 4, the scaling factor k = 0.05 and the iden-
tity matrix I is 64 × 64. Firstly the interval length is set
to d = 2. We compare the reconstruction performance
among the SKP measurement matrix, the random
Gaussian measurement matrix and random Bernoulli
measurement matrix. The quality of reconstructed im-
ages is measured by the peak signal-to-noise ratio
(PSNR) in Eq. (7)

MSE ¼ 1
N

X
x−xreconsj j2 ð6Þ



Fig. 1 Reconstructed Lena images with different measurement
matrices at compression ratio (m/n) 0.5: a Original image; b Gaussian
measurement matrix (22.8972 dB); c Bernoulli measurement matrix
(23.3919 dB); d SKP measurement matrix (27.1355 dB)

Table 1 PSNR (in dB) values of reconstructed images under
different experimental conditions

compression ratio 0.33 compression ratio 0.5

size 2 4 8 2 4 8

Lena

Gaussian 20.2904 20.5879 20.2732 23.1280 23.1937 23.2459

Bernoulli 20.2536 20.6113 20.5530 22.8623 23.2264 23.1766

SKP 25.1923 23.8560 19.3820 28.3688 27.1355 21.9910

Cameraman

Gaussian 17.7601 17.8477 17.8135 20.0125 20.3295 20.2115

Bernoulli 17.9861 17.9031 17.9366 20.0274 20.2517 20.6806

SKP 22.7272 21.9731 19.1054 25.5244 24.4332 19.6751
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PSNR ¼ 20 log
255ffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð7Þ

Simulation results are shown in Figs. 1 and 2. It can be
observed that the reconstructed images using the SKP
Fig. 2 Reconstructed Cameraman images with different
measurement matrices at compression ratio (m/n) 0.5: a Original
image; b Gaussian measurement matrix (20.1773 dB); c Bernoulli
measurement matrix (20.0256 dB); d SKP measurement
matrix (24.4332 dB)
measurement matrix is the clearest among all the recon-
structed images. The reconstructed images by the
random Gaussian measurement matrices and random
Bernoulli measurement matrices are blurry and lose
some details compared to the SKP measurement matrix.
In addition, the differences between the reconstructed
images are also very obvious in terms of PSNR values.
The PSNR values of reconstructed images by the SKP
measurement matrix are almost 4 dB higher than that
by the random measurement matrices. Figs. 1 and 2
demonstrate that the SKP measurement matrix outper-
forms the random Gaussian measurement matrices and
random Bernoulli measurement matrices at the com-
pression ratio of 0.5.
The further results present in Table 1. Table 1 shows

more PSNR values of reconstructed images. And the
measurement matrices include the random Gaussian
measurement matrices, random Bernoulli measurement
matrices and the SKP measurement matrices. In this
part, the size of the pascal matrix is considered.
Fig. 3 The reconstruction accuracy of Lena image between each
measurement matrix under different compression ratios
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It can be seen from Table 1 when the size of the pascal
matrix is 2 or 4, the reconstruction property of the SKP
measurement matrices is better than that of the random
Gaussian measurement matrices and random Bernoulli
measurement matrices from PSNR values. When the size
of the pascal matrix is 8, the reconstruction perform-
ance of the SKP measurement matrices has a serious
decline or even less than the random Gaussian meas-
urement matrices and random Bernoulli measurement
matrices, which is caused by the further weakening of
the orthogonality between row vectors of the SKP
measurement matrices. Thus, the SKP measurement
matrix construction needs to consider the influence
of the pascal matrix dimension. The reconstruction
accuracy of Lena image between each measurement
matrix under different compression ratios is shown
intuitively in Fig. 3.

Conclusions
In this paper, a new deterministic measurement matrix,
SKP measurement matrix, is proposed for compressive
imaging. The SKP measurement matrix has the advan-
tages of simple structure, less storage space and conveni-
ent physical implementation, which offer great potential
for compressive imaging applications. And we find that
the size of the pascal matrix affects the reconstruction
performance of the SKP measurement matrix. Simula-
tion results demonstrate that the SKP measurement
matrix with a proper pascal matrix can be used to effect-
ively reconstruct the natural images and outperforms
the random measurement matrices.
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