Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1186/s41476-017-0042-z | |
Published online | 01 May 2017 |
- Boyd RW, Nonlinear optics (2003) New YorkAcademic [Google Scholar]
- Jeong H, Mark AG, Fischer P, Magnesium plasmonics for UV applications and chiral sensing. Chem Commun (2016) 52, 12179–12182. https://doi.org/10.1039/C6CC06800F [CrossRef] [Google Scholar]
- Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A, Giessen H, Magnesium as novel material for active plasmonics in the visible wavelength range. Nano Lett (2015) 15, 127949–7955. https://doi.org/10.1021/acs.nanolett.5b03029 [NASA ADS] [CrossRef] [Google Scholar]
- Kooi, BJ, Palasantzas, G, Hosson, JThMDe: Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study. Appl. Phys. Lett. 89, 161914-1-3 (2006). [Google Scholar]
- Zaluska A, Zaluski L, Strom-olsen JOS, Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A Mater Sci Process (2001) 72, 2157–165. https://doi.org/10.1007/s003390100783 [NASA ADS] [CrossRef] [Google Scholar]
- Gao T, Han F, Zhu Y, Suo L, Luo C, Xu K, Wang C, Hybrid Mg 2+/Li + battery with long cycle life and high rate capability. Adv Energy Mater (2014) 1401507, 1–5. [Google Scholar]
- Habibi MK, Joshi SP, Gupta M, Hierarchical magnesium nano-composites for enhanced mechanical response. Acta Mater (2010) 58, 6104–6114. https://doi.org/10.1016/j.actamat.2010.07.028 [NASA ADS] [CrossRef] [Google Scholar]
- Locatelli E, Matteini P, Sasdelli F, Pucci A, Chiariello M, Molinari V, Pini R, Comes Franchini M, Surface chemistry and entrapment of magnesium nanoparticles into polymeric micelles: a highly biocompatible tool for photothermal therapy. Chem Commun (2014) 50, 7783–7786. https://doi.org/10.1039/c4cc01513d [CrossRef] [Google Scholar]
- Hassan SF, Gupta M, Development of high strength magnesium copper based hybrid composites with enhanced tensile properties. Mater Sci Technol (2003) 19, 253–259. https://doi.org/10.1179/026708303225009346 [NASA ADS] [CrossRef] [Google Scholar]
- Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X, Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrogen Energ (2011) 36, 4967–4975. https://doi.org/10.1016/j.ijhydene.2010.12.052 [CrossRef] [Google Scholar]
- Al-Gaashani R, Radiman S, Al-Douri Y, Tabet N, Daud AR, Investigation of the optical properties of Mg(OH)2 and MgO nanostructures obtained by microwave-assisted methods. J Alloy Compd (2012) 52, 71–76. https://doi.org/10.1016/j.jallcom.2012.01.045 [CrossRef] [Google Scholar]
- Ouraipryvan P, Sreethawong T, Chavadej S, Synthesis crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol-gel process. Mater Lett (2009) 63, 211862–1865. https://doi.org/10.1016/j.matlet.2009.05.068 [Google Scholar]
- Mirzaei H, Davoodnia A, Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-Dihydropyridines. Chinese J Catal (2012) 33, 91502–1507. https://doi.org/10.1016/S1872-2067(11)60431-2 [CrossRef] [Google Scholar]
- Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G, Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir (2009) 25, 5647–5654. https://doi.org/10.1021/la804230j [CrossRef] [Google Scholar]
- Martinez-Boubeta C, Bacells L, Cristofol R, Sanfeliu C, Rodriguez E, Weissleder R, Lope-Piedrafita S, Simeonidis K, Angelakeris M, Sandiumenge F, Calleja A, Casas L, Monty C, Martinez B, Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine (2010) 6, 2362–370. https://doi.org/10.1016/j.nano.2009.09.003 [Google Scholar]
- Di DR, He ZZ, Sun ZQ, Liu J, A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine (2012) 8, 81233–1241. https://doi.org/10.1016/j.nano.2012.02.010 [Google Scholar]
- Tang ZX, Lv BF, MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng (2014) 31, 3591–601. https://doi.org/10.1590/0104-6632.20140313s00002813 [CrossRef] [Google Scholar]
- Kurth M, Graat PCJ, Mittemeijer EJ, The oxidation kinetics of magnesium at low temperatures and low oxygen partial pressures. Thin Solid Films (2006) 500, 61–69. https://doi.org/10.1016/j.tsf.2005.11.044 [NASA ADS] [CrossRef] [Google Scholar]
- Canney SA, Sashin VA, Ford MJ, Kheifets AS, Electronic band structure of magnesium and magnesium oxide: experiment and theory. J. Phys. Condens Matter (1999) 11, 7507–7522. https://doi.org/10.1088/0953-8984/11/39/308 [NASA ADS] [CrossRef] [Google Scholar]
- Phuoc TX, Howard BH, Martello DV, Soong Y, Chyu MK, Synthesis of Mg(OH)2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents. Opt Laser Eng (2008) 46, 829–834. https://doi.org/10.1016/j.optlaseng.2008.05.018 [NASA ADS] [CrossRef] [Google Scholar]
- Abrinaei F, Torkamany MJ, Hantezadeh MR, Sabbaghzadeh J, Formation of Mg and MgO nanocrystals by laser ablation in liquid: effects of laser sources. Sci Adv Mater (2012) 4, 501–506. https://doi.org/10.1166/sam.2012.1309 [CrossRef] [Google Scholar]
- Gutierrez Y, Ortiz D, Sanz JM, Saiz JM, Gonzalez F, Everitt HO, Moreno F, How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures. Opt Express (2016) 24, 1820621–20631. https://doi.org/10.1364/OE.24.020621 [CrossRef] [Google Scholar]
- Sheik-bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW, Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Elect (1990) 26, 4760–769. https://doi.org/10.1109/3.53394 [CrossRef] [Google Scholar]
- Abrinaei F, Laser ablation of magnesium in water and investigation of optical nonlinearity by Z-scan technique. J Opt Soc Am B (2016) 33, 5864–870. https://doi.org/10.1364/JOSAB.33.000864 [NASA ADS] [CrossRef] [Google Scholar]
- Snellings R, Machiels L, Mertens G, Elsen J, Rietveld refinement strategy for quantitative phase analysis of partially amorphous zeolitised tuffaceous rocks. Geol Belg (2010) 13, 183–196. [Google Scholar]
- Zhu S, Lu YF, Hong MH, Laser ablation of solid substrates in a water-confined environment. Appl Phys Lett (2001) 79, 91396–1398. https://doi.org/10.1063/1.1400086 [NASA ADS] [CrossRef] [Google Scholar]
- Zeng HB, Cai WP, Li Y, Hu JL, Liu PS, Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B (2005) 109, 3918260–18266. https://doi.org/10.1021/jp052258n [Google Scholar]
- Foster M, D’Agostino M, Passno D, Water on MgO (100)—An infrared study at ambient temperatures. Surf Sci (2005) 590, 131–41. https://doi.org/10.1016/j.susc.2005.06.030 [NASA ADS] [CrossRef] [Google Scholar]
- Ferreirada Silva A, Veissid N, An CY, Pepe I, Barrosde Oliveira N, da Silva AV B, Optical determination of the direct bandgap energy of lead iodide crystals. Appl Phys Lett (1996) 69, 1930–1932. https://doi.org/10.1063/1.117625 [NASA ADS] [CrossRef] [Google Scholar]
- Site LD, Alavi A, Lynden-Bell RM. Structure and spectroscopy of a monolayer of water on MgO (100). J Chem Phys (2000) 113, 83344–3350. https://doi.org/10.1063/1.1287276 [NASA ADS] [CrossRef] [Google Scholar]
- Rezaei M, Khajenoori M, Nematollahi B. Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technol (2011) 205, 112–116. https://doi.org/10.1016/j.powtec.2010.09.001 [Google Scholar]
- Alavi MA, Morsali A, Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason Sonochem (2010) 17, 441–446. https://doi.org/10.1016/j.ultsonch.2009.08.013 [CrossRef] [Google Scholar]
- Rao SV, Podagatlapalli GK, Hamad S, Ultrafast laser ablation in liquids for nanomaterials and applications. J Nanosci Nanotechnol (2014) 14, 1364–1388. https://doi.org/10.1166/jnn.2014.9138 [CrossRef] [Google Scholar]
- Ganeev, RA, Usmanov, T: Nonlinear-optical parameters of various media. Quantum Electron + 37 (7), 605-622 (2007). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.