Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 4
Number of page(s) 6
DOI https://doi.org/10.1186/s41476-017-0033-0
Published online 25 January 2017
  1. Brogle R, Muggli P, Davis P, Hairapetian G, Joshi C, Studies of linear and nonlinear photoelectric emission for advanced accelerator applications. Proceedings of the Particle Accelerator Conference (1995) 1039. [Google Scholar]
  2. Kong SH, Kinross-Wright J, Nguyen DC, Sheffield RL, Photo cathodes for free electron lasers. Nucl. Instrum. Methods Phys. Res., Sect. A (1995) 358, 272. https://doi.org/10.1016/0168-9002(94)01425-6 [CrossRef] [Google Scholar]
  3. Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ, Sun Y, Schmitt F, Pianetta P, Howe RT, Shen Z-X, Melosh NA, Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. (2010) 9, 762. https://doi.org/10.1038/nmat2814 [NASA ADS] [CrossRef] [Google Scholar]
  4. Barwick B, Park HS, Kwon O-H, Spencer Baskin J, Zewail AH, 4D imaging of transient structures and mor phologies in ultrafast electron microscopy. Science (2008) 322, 1227. https://doi.org/10.1126/science.1164000 [NASA ADS] [CrossRef] [Google Scholar]
  5. Zewail AH, 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. (2006) 57, 65. https://doi.org/10.1146/annurev.physchem.57.032905.104748 [NASA ADS] [CrossRef] [Google Scholar]
  6. Mustonen A, Beaud P, Kirk E, Feurer T, Tsujino S, Efficient light coupling for optically excited high-density metallic nanotip arrays. Sci. Rep. (2012) 2, 916. https://doi.org/10.1038/srep00915 [NASA ADS] [CrossRef] [Google Scholar]
  7. Swanwick ME, Keathley PD, Fallahi A, Krogen PR, Laurent G, Moses J, Kärtner FX, Velásquez-García LF, Nanostructured ultrafast silicon-tip optical field-emitter arrays. Nano Lett. (2014) 14, 5035–5043. https://doi.org/10.1021/nl501589j [NASA ADS] [CrossRef] [Google Scholar]
  8. Dong CD, Swanwick ME, Keathley PD, Kaertner FX, Velasquez-Garcia LF, Multiplexing and scaling-down of nanostructured photon-triggered silicon field emitter arrays for maximum total electron yield. Nanotechnology (2015) 26, 265202. https://doi.org/10.1088/0957-4484/26/26/265202 [Google Scholar]
  9. Krüger M, Schenk M, Hommelhoff P, Attosecond control of electrons emitted from a nanoscale metal tip. Nature (2011) 475, 78–81. https://doi.org/10.1038/nature10196 [CrossRef] [Google Scholar]
  10. Obraztsov AN, Zolotukhin AA, Ustinov AO, Volkov AP, Svirko YP, Chemical vapor deposition of carbon films: in-situ plasma diagnostics. Carbon (2003) 41, 839. https://doi.org/10.1016/S0008-6223(02)00402-5 [Google Scholar]
  11. Bandurin DA, Mingels S, Kleshch VI, Lützenkirchen-Hecht D, Müller G, Obraztsov AN, Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite. Appl. Phys. Lett. (2015) 106, 233112. https://doi.org/10.1063/1.4922550 [NASA ADS] [CrossRef] [Google Scholar]
  12. Obraztsov AN, Volkov AP, Zakhidov AA, Lyashenko DA, Petrushenko YV, Satanovskaya OP, Field emission characteristics of nanostructured thin film carbon materials. Appl. Surf. Science. (2003) 215, 214. https://doi.org/10.1016/S0169-4332(03)00293-9 [NASA ADS] [CrossRef] [Google Scholar]
  13. Raman RK, Tao Z, Han T, Ruan C, Ultrafast imaging of photoelectron packets generated from graphite surface. Appl. Phys. Lett. (2009) 95, 181108. https://doi.org/10.1063/1.3259779 [NASA ADS] [CrossRef] [Google Scholar]
  14. Kuzmenko AB, van Heumen E, Carbone F, van der Marel D, Universal optical conductance of graphite. Phys. Rev. Lett. (2008) 100, 117401. https://doi.org/10.1103/PhysRevLett.100.117401 [NASA ADS] [CrossRef] [Google Scholar]
  15. Johnson LG, Dresselhaus G, Optical properties of graphite. Phys. Rev. B (1982) 7, 2275. https://doi.org/10.1103/PhysRevB.7.2275 [Google Scholar]
  16. Arndt A, Spoddig D, Esquinazi P, Barzola-Quiquia J, Dusari S, Butz T, Electric carrier concentration in graphite: dependence of electrical resistivity and magnetoresistance on defect concentration. Phys. Rev. B (2009) 80, 195402. https://doi.org/10.1103/PhysRevB.80.195402 [CrossRef] [Google Scholar]
  17. Dyukin RV, Martsinovski GA, Electrophysical phenomena accompanying femtosecond impacts of laser radiation on semiconductors. Laser Physics and Engineering. (2011) 78, 88. [Google Scholar]
  18. Tatar RC, Rabii S, Electronic properties of graphite a unified theoretical study. Phys. Rev. B (1982) 25, 4126. https://doi.org/10.1103/PhysRevB.25.4126 [Google Scholar]
  19. Kampfrath T, Perfetti L, Schapper F, Frischkorn C, Wolf M, Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. (2005) 95, 187403. https://doi.org/10.1103/PhysRevLett.95.187403 [Google Scholar]
  20. Butscher S, Milde F, Hirtschulz M, Knorr A, Hot electron relaxation and phonon dynamics in graphene. Appl. Phys. Lett. (2007) 91, 203103. https://doi.org/10.1063/1.2809413 [CrossRef] [Google Scholar]
  21. Lui C, Mak K, Shan J, Heinz T, Ultrafast photoluminescence from graphene. Phys. Rev. Lett. (2010) 105, 1. https://doi.org/10.1103/PhysRevLett.105.127404 [Google Scholar]
  22. Breusing M, Ropers C, Elsaesser T, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. (2009) 102, 1. https://doi.org/10.1103/PhysRevLett.102.086809 [CrossRef] [Google Scholar]
  23. Seibert K, Cho GC, Kutt W, Kurz H, Reitze DH, Dadap JI, Ahn H, Downer MC, Malvezzi AM, Femtosecond carrier dynamics in graphite. Phys. Rev. B (1990) 42, 2842. https://doi.org/10.1103/PhysRevB.42.2842 [Google Scholar]
  24. Riffe DM, Wang XY, Downer MC, Fisher DL, Tajima T, Erskine JL, More RM, Femtosecond thermionic emission from metals in the space-charge-limited regime. J. Opt. Soc. Am. B (1993) 10, 1424. https://doi.org/10.1364/JOSAB.10.001424 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.