Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 5
Number of page(s) 9
DOI https://doi.org/10.1186/s41476-016-0029-1
Published online 25 January 2017
  1. Yeh P, Yariv A, Cho AY, Optical surface waves in periodic layered media. Appl Phys Lett (1978) 32, 2104–105. https://doi.org/10.1063/1.89953 [NASA ADS] [CrossRef] [Google Scholar]
  2. Yeh P, Yariv A, Hong C-S, Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am (1977) 67, 4423–438. https://doi.org/10.1364/JOSA.67.000423 [NASA ADS] [CrossRef] [Google Scholar]
  3. Koju V, Robertson WM, Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers. Opt Lett (2016) 41, 132915–2918. https://doi.org/10.1364/OL.41.002915 [NASA ADS] [CrossRef] [Google Scholar]
  4. Shinn M, Robertson WM, Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens Actuators B Chem (2005) 105, 2360–364. https://doi.org/10.1016/j.snb.2004.06.024 [CrossRef] [Google Scholar]
  5. Sreekanth KV, Zeng S, Shang J, Yong K-T, Yu T, Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Sci Rep (2012) 2, 737. https://doi.org/10.1038/srep00737 [NASA ADS] [CrossRef] [Google Scholar]
  6. Pirotta S, Xu XG, Delfan A, Mysore S, Maiti S, Dacarro G, Patrini M, Galli M, Guizzetti G, Bajoni D, Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves. J Phys Chem C (2013) 117, 136821–6825. https://doi.org/10.1021/jp400223f [CrossRef] [Google Scholar]
  7. Delfan A, Liscidini M, Sipe JE, “Surface enhanced Raman scattering in the presence of multilayer dielectric structures”. J Opt Soc Am B (2012) 29, 81863–1874. https://doi.org/10.1364/JOSAB.29.001863 [CrossRef] [Google Scholar]
  8. Giorgis F, Descrovi E, Summonte C, Dominici L, Michelotti F, Experimental determination of the sensitivity of Bloch surface waves based sensors. Opt Express (2010) 18, 88087–8093. https://doi.org/10.1364/OE.18.008087 [NASA ADS] [CrossRef] [Google Scholar]
  9. Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F, Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sens Actuators B Chem (2012) 174, 292–298. https://doi.org/10.1016/j.snb.2012.07.015 [CrossRef] [Google Scholar]
  10. Danz N, Sinibaldi A, Michelotti F, Descrovi E, Munzert P, Schulz U, Sonntag F, Improving the sensitivity of optical biosensors by means of Bloch surface waves. Biomed Tech (2012) 57, 1584–587. [CrossRef] [Google Scholar]
  11. Liscidini M, Sipe JE, Analysis of Bloch-surface-wave assisted diffraction-based biosensors. J Opt Soc Am B (2009) 26, 2279–289. https://doi.org/10.1364/JOSAB.26.000279 [NASA ADS] [CrossRef] [Google Scholar]
  12. Paeder V, Musi V, Hvozdara L, Herminjard S, Herzig HP, Detection of protein aggregation with a Bloch surface wave based sensor. Sens Actuators B Chem (2011) 157, 1260–264. https://doi.org/10.1016/j.snb.2011.03.060 [CrossRef] [Google Scholar]
  13. Descrovi E, Sfez T, Quaglio M, Brunazzo D, Dominici L, Michelotti F, Herzig HP, Martin OJF, Giorgis F, Guided bloch surface waves on ultrathin polymeric ridges. Nano Lett (2010) 10, 62087–2091. https://doi.org/10.1021/nl100481q [CrossRef] [PubMed] [Google Scholar]
  14. Sfez T, Descrovi E, Yu L, Quaglio M, Dominici L, Nakagawa W, Michelotti F, Giorgis F, Herzig HP, “Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves”. Appl Phys Lett (2010) 96, 15151101. https://doi.org/10.1063/1.3385729 [NASA ADS] [CrossRef] [Google Scholar]
  15. Yu L, Barakat E, Sfez T, Hvozdara L, Di Francesco J, Peter Herzig H, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens”. Light Sci Appl (2014) 3, 1124. https://doi.org/10.1038/lsa.2014.5 [Google Scholar]
  16. Yu L, Barakat E, Di Francesco J, Herzig HP, Two-dimensional polymer grating and prism on Bloch surface waves platform. Opt Express (2015) 23, 2531640–31647. https://doi.org/10.1364/OE.23.031640 [NASA ADS] [CrossRef] [Google Scholar]
  17. Yu L, Barakat E, Nakagawa W, Herzig HP, Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform. J Opt Soc Am B (2014) 31, 122996–3000. https://doi.org/10.1364/JOSAB.31.002996 [CrossRef] [Google Scholar]
  18. Wu, X, Barakat, E, Yu, L, Sun, L, Wang, J, Tan, Q and Herzig, HP: “Phase-sensitive near field Investigation of Bloch surface wave propagation in curved waveguides”. J Eur Opt Soc Rapid Publ. 9, 14049-1–14049-8 (2014) [Google Scholar]
  19. Robertson WM, Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays. J Light Technol (1999) 17, 112013–2017. https://doi.org/10.1109/50.802988 [NASA ADS] [CrossRef] [Google Scholar]
  20. Konopsky VN, Alieva EV, Photonic crystal surface waves for optical biosensors. Anal Chem (2007) 79, 124729–4735. https://doi.org/10.1021/ac070275y [CrossRef] [Google Scholar]
  21. Bontempi E, Depero LE, Sangaletti L, Giorgis F, Pirri CF, Growth process analysis of a-Si1 − xNx:H Films probed by X-Ray Reflectivity. Mater Chem Phys (2000) 66, 2–3172–176. https://doi.org/10.1016/S0254-0584(00)00338-2 [Google Scholar]
  22. Hayrinen M, Roussey M, Gandhi V, Stenberg P, Saynatjoki A, Karvonen L, Kuittinen M, Honkanen S, Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition. J Light Technol (2014) 32, 2208–212. https://doi.org/10.1109/JLT.2013.2291960 [NASA ADS] [CrossRef] [Google Scholar]
  23. Paeder, V: Bloch surface wave biosensing: study of optical elements for the early detection of protein aggregation. (PhD Dissertation, École Polytechnique Fédérale de Lausanne, 2011) [Google Scholar]
  24. Gaspar-Armenta J, Surface waves in finite one-dimensional photonic crystals: mode coupling. Opt Commun (2003) 216, 4–6379–384. https://doi.org/10.1016/S0030-4018(02)02361-1 [NASA ADS] [CrossRef] [Google Scholar]
  25. Puurunen RL, “A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy: a short history of atomic layer”. Chem Vap Depos (2014) 20, 10-11–12332–344. https://doi.org/10.1002/cvde.201402012 [CrossRef] [Google Scholar]
  26. Dubey R, Vosoughi Lahijani B, Barakat E, Häyrinen M, Roussey M, Kuittinen M, Herzig HP, Near-field characterization of a Bloch-surface-wave-based 2D disk resonator. Opt Lett (2016) 41, 214867–4870. https://doi.org/10.1364/OL.41.004867 [NASA ADS] [CrossRef] [Google Scholar]
  27. Sfez T, Descrovi E, Yu L, Brunazzo D, Quaglio M, Dominici L, Nakagawa W, Michelotti F, Giorgis F, Martin OJ, Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. J Opt Soc Am B (2010) 27, 81617–1625. https://doi.org/10.1364/JOSAB.27.001617 [NASA ADS] [CrossRef] [Google Scholar]
  28. Sfez, T: Investigation of surface electromagnetic waves with multi-heterodyne scanning near-field optical microscopy. (PhD Dissertation, École Polytechnique Fédérale de Lausanne, 2010) [Google Scholar]
  29. Lin J, Dellinger J, Genevet P, Cluzel B, De Fornel F, Capasso F, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave”. Phys Rev Lett (2012) 109, 993904. https://doi.org/10.1103/PhysRevLett.109.093904 [CrossRef] [Google Scholar]
  30. Menotti M, Liscidini M, Optical resonators based on Bloch surface waves. J Opt Soc Am B (2015) 32, 3431–438. https://doi.org/10.1364/JOSAB.32.000431 [NASA ADS] [CrossRef] [Google Scholar]
  31. Ulrich R, Theory of the prism-film coupler by plane-wave analysis. J Opt Soc Am (1970) 60, 101337–1350. https://doi.org/10.1364/JOSA.60.001337 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.