Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 11, 2016
Article Number 16014
Number of page(s) 6
Published online 14 February 2016
  1. N. Nelson, and D. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5, 447–476 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  2. J. I. Hedges, “Global biogeochemical cycles: progress and problems,” Mar. Chem. 39, 67–93 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  3. N. Scully, W. Cooper, and L. Tranvik, “Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter,” FEMS Microbiol. Ecol. 46, 353–357 (2003). [CrossRef] [Google Scholar]
  4. J. T. O. Kirk, Light … photosynthesis in aquatic ecosystems (Cambridge University Press, New York, 2011). [Google Scholar]
  5. O. Zielinski, and J. Watson (eds.), Subsea optics and imaging (first edition, Woodhead Publishing limited, Cambridge, 2014). [Google Scholar]
  6. R. Del Vecchio, and N. V. Blough, “Influence of ultraviolet radiation on the chromophoric dissolved organic matter in natural waters,” in Environmental UV radiation: impact on ecosystems and human health and predictive models, F. Ghetti, G. Checcucci and J. F. Bornman, eds., 203–216, (Springer Netherlands, Dordrecht, 2006). [Google Scholar]
  7. P. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  8. P. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107, 402–418 (2007). [CrossRef] [Google Scholar]
  9. F. Jiang, F. S-C. Lee, X. Wang, and D. Dai, “The application of Excitation /Emission Matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China,” Mar. Chem. 110, 109–119 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. M.G. Villagarcia, O. Llinas, R. Reuter, M.J. Rueda, O. Zielinski, and J. Godoy, “Distribution of gelbstoff fluorescence in the Northern Canary Box,” Deep-Sea Res. Pt. II 49, 3497–3511 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  11. S. P. Garaba, D. Voß and O. Zielinski, “Physical, bio-optical state and correlations in North-Western European Shelf Seas,” Remote Sens. 6, 5042–5066 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  12. O. Zielinski, D. Voß, B. Saworski, B. Fiedler, and A. Körtzinger, “Computation of nitrate concentrations in turbid coastal waters using an in situ ultraviolet spectrophotometer,” J. Sea Res. 65, 456–460 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  13. E. Boyle, N. Guerreiro, A. Thiallet, R. Del Vecchio, and N. Blough, “Optical properties of humic substances and CDOM: relation to structure,” Environ. Sci. Technol. 43, 2262–2268 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. R. Lakowicz, Principles of fluorescence spectroscopy (third edition, Springer US, New York, 2006). [CrossRef] [Google Scholar]
  15. C. Moore, A. Barnand, P. Fietzek, M. Lewis, H. Sosik, S. White, and O. Zielinski, “Optical tools for ocean monitoring and research,” Ocean Sci. 5, 661–684 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. F. Degryse, E. Smolders, and D. R. Parker, “Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies , prediction and applications – a review,” Eur. J. Soil Sci. 60, 590–612, (2009). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. Nardi, D. Pizzeghello, L. Bragazza, and R. Gerdol, “Low- molecular weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy,” J. Chem. Ecol. 29, 1549–1564 (2003). [CrossRef] [Google Scholar]
  18. E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc.-Rapid. 8, 13069 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  19. D. Said-Pullicino, G. Gigliott, and A. Vella, “Environmental fate of triasulfuron in soils amended with municipal waste compost,” J. Environ. Qual. 33, 1743–1751 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  20. P. Sáhez-Marín, J. Santos-Echeandía, M. Nieto-Cid, X. A. varez-Salgado, and R. Beiras, “Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae,” Aquat. Toxicol. 96, 90–102 (2010). [CrossRef] [Google Scholar]
  21. F. Yang, M. Wang, and Z. Wang, “Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study,” Chemosphere 93, 82–89 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  22. J. M. Marín–Benito, C. D. Brown, E. Herrero-Hernaez, M. Arienzo, M. J. Sáhez-Martín and M. S. Rodrigez-Cruz, “Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns,” Sci. Total Environ. 463–464, 589–599 (2013). [CrossRef] [Google Scholar]
  23. R. Jaffé, K. Cawley, and Y. Yamashita, “Applications of excitation emission matrix fluorescence with parallel factor analysis (EEMPARAFAC) in assessing environmental dynamics of natural dissolved organic matter (DOM),” in Aquatic environments: a review. Advances in the physicochemical characterization of dissolved organic matter: impact on natural and engineered systems, Fernando Rosario-Ortiz, ed., 27–73 (first edition, Oxford University Press, Colorado, 2014). [Google Scholar]
  24. P. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  25. O. Zielinski, J. A. Busch, A. D. Cembella, J. Engelbrektsson, A. K. Hannides, and H. Schmidt, “Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens,” Ocean Sci. 5, 329–349 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  26. D. Kolpin, E. Furlong, M. Meyer, E. Thurman, S. Zaugg, L. Barber, and H. Buxton, “Pharmaceuticals, hormones and other organic wastewater contaminants in U. S. streams 1999–2000: a national reconnaissance,” Environ. Sci. Technol. 36, 1202–1211 (2002). [CrossRef] [PubMed] [Google Scholar]
  27. R. W. P. M. Laane, A. D. Vethaak, J. Gandrass, K. Vorkamp, A. Köh, M. M. Larsen, and J. Strand, “Chemical contaminants in the Wadden sea: sources, transport, fate and effects,” J. Sea Res. 82, 10–53 (2002). [Google Scholar]
  28. S. Gassmann, A. Trozjuk, J. Singhal, H. Schuette, M. L. Miranda, and O. Zielinski, “PCB based micro fluidic system for thermal cycling of seawater samples,” in Proceedings to IEEE International Conference Industrial Technology (ICIT), 3365–3369 (IEEE, Seville, 2015). [Google Scholar]
  29. G. Liebezeit, T. Kraul, and B. Everts, “Bulk chemical characterization of particulate material from the Jade Bay, lower Saxonian Wadden Sea,” Neth. J. Aquat. Ecol. 28, 365–370 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  30. H. Jin, G. Liebezeit, and D. Ziehe, “Distribution of total mercury in surface sediments of the Western Jade Bay, Lower Saxonian Wadden Sea, Southern North Sea,” Bull. Environ. Contam. Toxicol. 88, 597–604 (2012). [CrossRef] [Google Scholar]
  31. S. Weigel, J. Kuhlmann, and H. Hühnerfuss, “Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea,” Sci. Total Environ. 295, 131–141 (2002). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.