Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 11, 2016
Article Number 16009
Number of page(s) 11
DOI https://doi.org/10.2971/jeos.2016.16009
Published online 06 February 2016
  1. G. Odian, Principles of Polymerization (4th Edition, Wiley-Interscience, Haboken, 2004). [CrossRef] [Google Scholar]
  2. J. T. Sheridan, M. Downey, and F. T. O’Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A-Pure Appl. Optics 3, 477–488 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  3. M. R. Gleeson, and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A-Pure Appl. Op. 11, 024008 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  4. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended non-local photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31, 2648–2656 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  5. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of monomer diffusion in depth in photopolymer materials,” Opt. Commun. 274, 43–49 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Optics 52, 8519–8527 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  7. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Optics 43, 2900–2905 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  8. F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honell, D. Jurbergs, M. Kogure, et al., “Full-Color Self-processing Holographic Pho-topolymers with High Sensitivity in Red-The First Class of Instant Holographic Photopolymers,” J. Photopolym. Sci. Tec. 22, 257–260 (2009). [CrossRef] [Google Scholar]
  9. T. Smirnova, L. Kokhtich, O. Sakhno, and J. Stumpe, “Holo-graphic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties,” Opt. Spectrosc. 110, 129–136 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  10. H. Berneth, F.-K. Bruder, T. Fadcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. R. Gleeson, S. Liu, and J. T. Sheridan, “Improvement of photopolymer materials for holographic data storage,” J. Mater. Sci. 44, 6090–6099 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  12. N. Suzuki, and Y. Tomita, “Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticledispersed photopolymers,” Appl. Phys. Lett. 88, 011105 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. Gallego, A. Marquez, F. J. Guardiola, M. Riquelme, R. Fer-nandez, I. Pascual, and A. Belendez, “Linearity in the response of photopolymers as optical recording media,” Opt. Express 21, 10995–11008 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  14. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001). [CrossRef] [Google Scholar]
  15. M. Ortuno, M. Riquelme, S. Gallego, A. Márquez, I. Pascual, and A. Beléndez, “Overmodulation Control in the Optimization of a HPDLC Device with Ethyl Eosin as Dye,” Int. J. Polym. Sci. 2013, 8 (2013). [CrossRef] [Google Scholar]
  16. M. Kvěetoň, A. Havránek, P. Fiala, and I. Richter, “Polymer holography I - Method and experiment,” Ploym. Bull. 58, 253–259 (2007). [CrossRef] [Google Scholar]
  17. S. Gallego, M. Ortuno, C. Neipp, C. Garcia, A. Belendez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215, 263–269 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  18. M. Moothanchery, I. Naydenova, and V. Toal, “Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film,” Opt. Express 19, 13395–13404 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Trochtchanovitch, N. Kostrov, E. Goulanian, A. F. Zerrouk, E. Pen, and V. Shelkovnikov, “Method of characterization of effective shrinkage in reflection holograms,” Opt. Eng. 43, 1160–1168 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  20. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [NASA ADS] [CrossRef] [Google Scholar]
  21. R. Alferness, “Analysis of propagation at the second-order Bragg angle of a thick holographic grating,” J. Opt. Soc. Am. 66, 353–362 (1976). [NASA ADS] [CrossRef] [Google Scholar]
  22. G. Zhao, and P. Mouroulis, “Second order grating formation in dry holographic photopolymers,” Opt. Commun. 115, 528–532 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  23. T. Gaylord, and M. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef] [Google Scholar]
  24. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  25. I. Richter, Z. Ryzí, and P. Fiala, “Analysis of binary diffraction gratings: Comparison of different approaches,” J. Mod. Optic. 45, 1335–1355 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  27. P. Vojtís˜ek, and M. Kvěetoň, “Monitoring of overmodulation effect in high efficient transmission gratings produced in photopolymers,” Proc. SPIE 9450, 945011–945018 (2015). [CrossRef] [Google Scholar]
  28. P. Vojtís˜e˜k and M. Kvěetoň, “Real-time direct measurement of diffraction efficiency of reflection gratings in photopolymer recording materials,” Proc. SPIE 9442, 944211–944218 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.