Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 11, 2016
Article Number 16004
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2016.16004
Published online 06 February 2016
  1. M. L. Baesso, J. R. D. Pereira, A. C. Bento, and A. J. Palangana, “Thermal lens spectrometry to study complex fluids,” Braz. J. Phys. 28, (1998). [Google Scholar]
  2. D. A. Wruck, R. E. Russo, and R. J. Silva, “Thermal lens spectroscopy of plutonium using a laser diode and fiber optics,” J. Alloy. Compd. 213–214, 481–483 (1994). [CrossRef] [Google Scholar]
  3. N. G. C. Astrath, J. Shen, M. L. Baesso, F. B. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, et al., “Material characterization with top-hat cw laser induced photothermal techniques: A short review,” J. Phys. Conf. Ser. 214, 012014 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  4. N. Astrath, F. Astrath, J. Shen, J. Zhou, K. Michaelian, C. Fairbridge, L. Malacarne, et al., “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  5. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” JOSA B 23, 1408–1413 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  6. C. Jacinto, A. Andrade, T. Catunda, S. Lima, and M. Baesso, “Thermal lens spectroscopy of Nd: YAG,” Appl. Phys. Lett. 86, 34104–34104 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  7. C. Jacinto, T. Catunda, D. Jaque, L. Bausa, and J. García-Solé, “Thermal lens and heat generation of Nd: YAG lasers operating at 1.064 and 1.34 mm,” Opt. Express 16, 6317–6323 (2008). [CrossRef] [Google Scholar]
  8. C. Jacinto, D. N. Messias, A. A. Andrade, S. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses–A review,” J. Non-Cryst. Solids 352, 3582–3597 (2006). [CrossRef] [Google Scholar]
  9. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-Transient Effects in Lasers with Inserted Liquid Samples” J. Appl. Phys. 36, 3–8 (1965). [NASA ADS] [CrossRef] [Google Scholar]
  10. R. Escalona, “Study of a convective field induced by thermal lensing using interferometry,” Opt. Commun. 281, 388–394 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Optics 21, 1663–1669 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. Hung, A. Marcano, J. Castillo, J. González, V. Piscitelli, A. Reyes, and A. Fernández, “Thermal lensing and absorbance spectra of a fluorescent dye solution,” Chem. Phys. Lett. 386, 206–210 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  13. L. C. M. Miranda, “On the use of the thermal lens effect as a thermo-optical spectroscopy of solids,” Appl. Phys. A 32, 87–93 (1983). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  15. N. G. Astrath, F. B. Astrath, J. Shen, J. Zhou, P. R. Pedreira, L. C. Malacarne, A. C. Bento, et al., “Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials,” Opt. Lett. 33, 1464–1466 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  16. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, et al., “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  17. J. Bernal-Alvarado, M. Sosa, R. Mayén-Mondragón, J. M. Yánez- Limón, R. Flores-Farías, F. Hernández-Cabrera, and P. Palomares, “Mismatched Mode Thermal Lens for Assessing Thermal Diffusivity of Serum and Plasma from Human Blood,” Instrum. Sci. Technol. 34, 99–105 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. Gutiérrez Fuentes, J. F. Sánchez Ramírez, J. L. Jiménez Pérez, J. A. Pescador Rojas, E. Ramón-Gallegos, and A. Cruz-Orea, “Thermal Diffusivity Determination of Protoporphyrin IX Solution Mixed with Gold Metallic Nanoparticles,” Int. J. Thermophys. 28, 1048–1055 (2007). [CrossRef] [Google Scholar]
  19. C. Jacinto, T. Catunda, D. Jaque, J. Garcia Sole, and A. A. Kaminskii, “Thermal lens spectroscopy through phase transition in neodymium doped strontium barium niobate laser crystals,” J. Appl. Phys. 101, 023113–023116 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  20. R. Mayén-Mondragón and J. M. Yáñez-Limón, “Study of blue phases transition kinetics by thermal lens spectroscopy in cholesteryl nonanoate,” Rev. Sci. Instrum. 77, 044903 (2006). [CrossRef] [Google Scholar]
  21. M. Franko, “Recent applications of thermal lens spectrometry in food analysis and environmental research,” Talanta 54, 1–13 (2001). [CrossRef] [Google Scholar]
  22. C. Hu, and J. R. Whinnery, “New Thermooptical Measurement Method and a Comparison with Other Methods,” Appl. Optics 12, 72–79 (1973). [NASA ADS] [CrossRef] [Google Scholar]
  23. J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Accounts Chem. Res. 7, 225–231 (1974). [CrossRef] [Google Scholar]
  24. J. F. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory,” Appl. Optics 29, 52–63 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  25. P. Kumar, S. Dinda, and D. Goswami, “Effect of molecular structural isomers in thermal lens spectroscopy,” Chem. Phys. Lett. 601, 163–167 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. D. Snook, and R. D. Lowe, “Thermal lens spectrometry. A review,” Analyst 120, 2051–2068 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. E. Bialkowski, and A. Chartier, “Diffraction effects in singleand two-laser photothermal lens spectroscopy,” Appl. Optics 36, 6711–6721 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  28. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley-Blackwell, Haboken, 1996). [Google Scholar]
  29. B. Li, and E. Welsch, “Probe-beam diffraction in a pulsed top-hat beam thermal lens with a mode-mismatched configuration,” Appl. Optics 38, 5241–5249 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  30. B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for modemismatched thermal lens with top-hat beam excitation,” Appl. Phys. B 80, 527–534 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  31. S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steadystate thermal lens measurements in thin films,” J. Appl. Phys. 67, 1170–1182 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  32. J. Shen and R. D. Snook, “A radial finite model of thermal lens spectrometry and the influence of sample radius upon the validity of the radial infinite model,” J. Appl. Phys. 73, 5286–5288 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  33. H. S. J. J. C. Carslaw, Conduction of heat in solids (Clarendon Press, Oxford, 1959). [Google Scholar]
  34. M. Sabaeian and H. Nadgaran, “An analytical model for finite radius dual-beam mode-mismatched thermal lens spectroscopy,” J. Appl. Phys. 114, 133102–133107 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  35. H. Nadgaran and M. Sabaian, “Pulsed pump: Thermal effects in solid state lasers under super-Gaussian pulses,” Pramana - J. Phys. 67, 1119–1128 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  36. A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, “Thermal lens determination of the temperature coefficient of optical path length in optical materials,” Rev. Sci. Instrum. 74, 877–880 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  37. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  38. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  39. L. C. Malacarne, N. G. C. Astrath, and M. L. Baesso, “Unified theoretical model for calculating laser-induced wavefront distortion in optical materials,” JOSA B 29, 1772–1777 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  40. E. Peliçon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, et al., “Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry,” J. Non-Cryst. Solids 304, 244–250 (2002). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.