Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 11, 2016
|
|
---|---|---|
Article Number | 16003 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2016.16003 | |
Published online | 06 February 2016 |
- T. Platt, N. Hoepffner, V. Stuart, and C. Brown (eds.), “Why ocean colour? The societal benefits of ocean-colour technology,” (IOCCG, Reports of the International Ocean-Colour Coordinating Group, No. 7, 2008). [Google Scholar]
- J. Watson, and O. Zielinski (eds.), Subsea optics and imaging (Woodhead Publishing, Cambridge, UK, 2013). [CrossRef] [Google Scholar]
- O. Zielinski, J. A. Busch, A. D. Cembella, K. L. Daly, J. Engelbrektsson, A. K. Hannides, and H. Schmidt, “Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens,” Ocean Sci. 5, 329–349 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. P. Garaba, T. H. Badewien, A. Braun, A.-C. Schulz, and O. Zielinski, “Using ocean colour remote sensing products to estimate turbidity at the Wadden Sea time series station Spiekeroog,” J. Eur. Opt. Soc.-Rapid 9, 14020 (2014). [CrossRef] [Google Scholar]
- C. Moore, A. Barnard, P. Fietzek, M. R. Lewis, H. M. Sosik, S. White, and O. Zielinski, “Optical tools for ocean monitoring and research,” Ocean Sci. 5, 661–684 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- G. N. Plass, T. J. Humphreys, and G. W. Kattawar, “Color of the ocean,” Appl. Opt. 17, 1432–1446 (1978). [NASA ADS] [CrossRef] [Google Scholar]
- S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above-and in-water methods for determining water-leaving radiances,” J. Atmos. Oceanic Technol. 19, 486–515 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. L. Mueller, G. S. Fargion, C. R. McClain, S. Pegau, J. R. V. Zaneveld, B. G. Mitchel, M. Kahru, et al. (eds.), “Ocean optics protocols for satellite ocean color sensor validation,” (NASA, revision 4, 2003). [Google Scholar]
- S. P. Garaba, and O. Zielinski, “An assessment of water quality monitoring tools in an estuarine system,” Remote Sens. Appl.: Soc. Environ. 2, 1–10 (2015). [NASA ADS] [Google Scholar]
- E. L. Hestir, V. E. Brando, M. Bresciani, C. Giardino, E. Matta, P. Villa, and A. G. Dekker, “Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission,” Remote Sens. Environ. 167, 181–195 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- A. Tanaka, H. Sasaki, and J. Ishizaka, “Alternative measuring method for water-leaving radiance using a radiance sensor with a domed cover,” Opt. Express 14, 3099–3105 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- T. Suresh, M. Talaulikar, E. Desa, S. G. Prabhu Matondkar, T. S. Kumar, and A. Lotlikar, “A simple method to minimize orientation effects in a profiling radiometer,” Mar. Geod. 35, 441–454 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- J. Piskozub, “Effect of ship shadow on in-water irradiance measurements,” Oceanologia 46, 103–112 (2004). [Google Scholar]
- R. W. Spinrad, and E. A. Widder, “Ship shadow measurements obtained from a manned submersible,” Proc. SPIE 1750, 372–383 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- K. J. Waters, R. C. Smith, and M. R. Lewis, “Avoiding ship-induced light-field perturbation in the determination of oceanic optical properties,” Oceanography 3, 18–21 (1990). [CrossRef] [Google Scholar]
- Hydrographic funnels operator manual, 696 D 0001 (Neptun Werft, 2013). [Google Scholar]
- I. Reda, and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76, 577–589 (2004). [CrossRef] [Google Scholar]
- C. T. Weir, D. A. Siegel, A. F. Michaels, and D. W. Menzies, “In situ evaluation of a ship’s shadow,” Proc. SPIE 2258, 815–821 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- S. B. Hooker, and A. Morel, “Platform and environmental effects on above-water determinations of water-leaving radiances,” J. Atmos. Oceanic Technol. 20, 187–205 (2003). [CrossRef] [Google Scholar]
- R. Leathers, T. V. Downes, and C. Mobley, “Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments,” Opt. Express 8, 561–570 (2001). [CrossRef] [Google Scholar]
- C. A. Stedmon, C. L. Osburn, and T. Kragh, “Tracing water mass mixing in the Baltic–North Sea transition zone using the optical properties of coloured dissolved organic matter,” Estuar. Coast. Shelf S. 87, 156–162 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- T. Kristiansen, and E. Aas, “Water type quantification in the Skagerrak, the Kattegat and off the Jutland west coast,” Oceanologia 57, 177–195 (2015). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.