Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15050 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2015.15050 | |
Published online | 07 November 2015 |
- A. Soloviev, and R. Lukas, Near-surface layer of the ocean: structure, dynamics and applications (Springer, Berlin, 2006). [Google Scholar]
- P. S. Liss, and R. A. Duce, The sea surface and global change (Cambridge University Press, Cambridge, 2005). [Google Scholar]
- M. A. Cunliffe, S. Engel, S. Frka, B. Gašparović, C. Guitart, J. C. Murrell, M. Salter, et al., “Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface,” Prog. Oceanogr. 109, 104–116 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- Q. Gao, C. Leck, C. Rauschenberg, and P. A. Matrai, “On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer,” Ocean Sci. 8, 401–418 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- J. M. Sieburth, and J. T. Conover, “Slicks associated with Trichodesmium blooms in the Sargasso sea,” Nature 205, 830–831 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- M. Cunliffe, R. C. Upstill-Goddard, and J. C. Murrell, “Microbiology of aquatic surface microlayers,” FEMS Microbiol. Rev. 35, 233–246 (2011). [CrossRef] [Google Scholar]
- P. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Revi. 107, 402–418 (2007). [CrossRef] [Google Scholar]
- S. Opsahl, and R. Benner, “Distribution and cycling of terrigenous dissolved organic matter in the ocean,” Nature 386, 480–482 (1997). [Google Scholar]
- J. R. Lakowicz, Principles of fluorescence spectroscopy (third edition, Plenum Press, New York, 2006). [CrossRef] [Google Scholar]
- N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review,” River Res. Appl. 23, 631–649 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- P. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- H. Haken, and H. C. Wolf, Molecular physics and elements of quantum chemistry: introduction to experiments and theory (Springer Verlag, Berlin, 1995). [CrossRef] [Google Scholar]
- D. Milori, L. Martin-Neto, C. Bayer, J. Mielniczuk, and V. Vagnato, “Humification degree of soil humic acids determined by fluorescence spectroscopy,” Soil Sci. 167, 739–749 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- A. Zsolnay, E. Baigar, M. Jimnez, B. Steinweg, and F. Saccomandi, “Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying,” Chemosphere 38, 45–50 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- K. Kalbitz, W. Geyer, and S. Geyer, “Spectroscopic properties of dissolved humic substances-a reflection of land use history in a fen area,” Biogeochemistry 47, 219–238 (1999). [NASA ADS] [Google Scholar]
- W. D. Garrett, “Collection of slick-forming materials from the sea surface,” Limnol Oceanogr. 10, 602–605 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- B. Ćosović, and V. Vojvodić, “Voltammetric analysis of surface active substances in natural seawater,” Electroanal. 10, 429–434 (1998). [CrossRef] [Google Scholar]
- C. Belzile, C. S. Roesler J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf S. 67, 441–449 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- P. Kowalczuk, J. Ston-Egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, “Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96, 273–292 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- V. Drozdowska, and M. Józefowicz, “Spectroscopic studies of marine surfactants in the southern Baltic Sea,” Oceanol. 57, 159–167 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- V. Drozdowska, W. Freda, E. Baszanowska, K. Rudź, M. Darecki, J. R. Heldt, and H. Toczek, “Spectral properties of natural and oil polluted Baltic seawater - results of measurements and modeling,” Eur. Phys. J-Spec. Top. 222, 1–14 (2013). [Google Scholar]
- E. Parlanti, K. Wörz, L. Geoffroy, and M. Lamotte, “Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs,” Org. Geochem. 31, 1765–1781 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- Y.-P. Chin, G. Aiken, and E. O’Loughlin, “Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances,” Environ. Sci. Technol. 28, 1853–1858 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- D. M. McKnight, R. Harnisch, R. L. Wershaw, J. S. Baron, and S. Schiff, “Chemical characteristics of particulate, colloidal, and dissolved organic matter in Loch Vale Watershed, Rocky Mountain National Park,” Biogeochemistry 36, 99–214 (1997). [CrossRef] [Google Scholar]
- S. Glatzel, K. Kalbitz, M. Dalva, and T. Moore, “Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs,” Geoderma 113, 397–411 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- S. Úscinowicz (ed.), Geochemistry of Baltic Sea, surface sediments (PIG-PIB, Warsaw, 2011). [Google Scholar]
- H. F. Wilson, and M. A. Xenopoulos, “Effects of agricultural land use on the composition of fluvial dissolved organic matter,” Nature Geosci. 2, 37–41 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- C. Huguet, J. Kim, G. de Lange, J. S. Sinninghe Damsté, and S. Schouten, “Effects of long term oxic degradation on the TEX86 and BIT organic proxies,” Org. Geochem. 40, 1188–1194 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- N. Senesi, T. M. Miano, M. R. Provenzano, and G. Brunetti, “Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy,” Soil Sci. 152, 259–271 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- T. Ohno, “Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter,” Environ. Sci. Technol. 36, 742–746 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- F. J. Stevenson, Humus Chemistry (Wiley, New York, 1982). [Google Scholar]
- T. M. Miano, and N. Senesi, “Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry,” Sci. Total Environ. 117, 41–51 (1992). [CrossRef] [Google Scholar]
- S.-C. Tam, and G. Sposito, “Fluorescence spectroscopy of aqueous pine litter extracts: effects of humification and aluminium complexation,” J. Soil Sci. 44, 513–524 (1993). [CrossRef] [Google Scholar]
- C. J. Williams, Y. Yamashita, H. F. Wilson, R. Jaffe, and M. A. Xenopoulos, “Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems,” Limnol. Oceanogr. 55, 1159–1171 (2010). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.