Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15049
Number of page(s) 9
DOI https://doi.org/10.2971/jeos.2015.15049
Published online 07 November 2015
  1. J. K. Lawson, J. M. Auerbach, R. E. English, M. A. Henesian, J. T. Hunt, R. A. Sacks, J. B. Trenholme, et al., “NIF Optical Specifications - The Importance of the RMS Gradient,” Proc. SPIE 3492, 336 (1998). [Google Scholar]
  2. H. Y. Tam, and H. B. Cheng, “An investigation of the effects of the tool path on the removal of material in polishing,” J. Mater. Process. Tech. 210(5), 807–818 (2010). [CrossRef] [Google Scholar]
  3. J. M. Tamkin, and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Optics 49(33), 6522–6536 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  4. D. Liao, Z. Yuan, C. Tang, R. Xie, and X. Chen, “Mid-Spatial Frequency Error (PSD-2) of optics induced during CCOS and fullaperture polishing,” J. Eur. Opt. Soc.-Rapid 8, 13031 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  5. T. I. Suratwala, M. D. Feit, and W. A. Steele, “Material removal and surface figure during pad polishing of fused silica,” J. Am. Ceram. Soc. 93(5), 1326–1340 (2010). [CrossRef] [Google Scholar]
  6. F. Cooke, N. Brown, and E. Prochnow, “Annular lapping of precision optical flatware,” Opt. Eng. 15(5), 155407–155407 (1976). [CrossRef] [Google Scholar]
  7. D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17(24), 21850–21866 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  8. C. Fan, J. Zhao, L. Zhang, Y. S. Wong, G. S. Hong, and W. S. Zhou, “Modeling and analysis of the material removal profile for free abrasive polishing with sub-aperture pad,” J. Mater. Process. Tech. 214(2), 285–294 (2014). [CrossRef] [Google Scholar]
  9. J. C. Lambropoulos, C. Miao, and S. D. Jacobs, “Magnetic Field Effects on Shear and Normal Stresses in Magnetorheological Finishing,” Opt. Express 18(19), 19713–19723 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. Arkwright, J. Burke, and M. Gross, “A deterministic optical figure correction technique that preserves precision-polished surface quality,” Opt. Express 16(18), 13901–13907 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Tech. 213(9), 1532–1537 (2013). [CrossRef] [Google Scholar]
  12. Z. Z. Wang, R. Pan, Y. B. Guo, D. X. Zhang, Y. H. Xie, and J. Wang, “Controllability of stiffness of bonnet tool polishing larges aspheric lenses,” High power laser and particle beams 25(9), 2270–2274 (2013). [CrossRef] [Google Scholar]
  13. K. Park, J. Park, B. Park, and H. Jeong, “Correlation between breakin characteristics and pad surface conditions in silicon wafer polishing,” J. Mater. Process. Tech. 205(1)-(3), 360–365 (2008). [CrossRef] [Google Scholar]
  14. D. Liao, J. Wang, S. Zhao, R. Xie, X. Chen, Z. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  15. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Tech. 11, 214–256 (1927). [Google Scholar]
  16. D. Liao, R. Xie, J. Hou, X. Chen, and B. Zhong, “A polishing process for nonlinear optical crystal flats based on an annular polyurethane pad,” Appl. Surf. Sci. 258(22), 8552–8557 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. R. Runnels, I. Kim, J. Schleuter, C. Karlsrud, and M. Desai, “Modelling tool for chemical- mechanical polishing design and evaluation,” IEEE T. Semiconduct. M. 11(3), 501–510 (1998). [CrossRef] [Google Scholar]
  18. Y. B. Xin, “Modeling of pad-wafer contact pressure distribution in chemical-mechanical polishing,” Int. J. Mfg. Sci. Technol. 2(1), 20–33 (2000). [Google Scholar]
  19. G. Fu, and A. Chandra, “A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelastic pad deformation,” J. Electron. Mater. 31(10), 1066–1073 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  20. O. Chang, H. Kim, K. Park, B. Park, H. Seo, and H. Jeong, “Mathematical modeling of CMP conditioning process,” Microelectron. Eng. 84(4), 577–583 (2007). [CrossRef] [Google Scholar]
  21. Y. Y. Zhou, and E. C. Davis, “Variation of polish pad shape during pad dressing,” Mater. Sci. Eng. B 68(2), 91–98 (1999). [CrossRef] [Google Scholar]
  22. Y. G. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-microcontact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Tech. 183(2)-(3), 374–379 (2007). [CrossRef] [Google Scholar]
  23. D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014). [CrossRef] [Google Scholar]
  24. M. Y. Tsai, and Y. S. Liao, “Dressing characteristics of oriented single diamond on CMP polyurethane pad,” Mach. Sci. Technol. 13(1), 92–105 (2009). [CrossRef] [Google Scholar]
  25. D. W. Kim, and S. W. Kim, “Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes,” Opt. Express 13(3), 910–917 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  26. L. Zhou, Y. Dai, X. Xie, and S. Li, “A Novel Path Used in Computercontrolled Polishing Process Based on Uniform-area-increment Spiral,” Journal of National University of Defense Technology 31(4), 1–4 (2009). [Google Scholar]
  27. C. Song, Y. Dai, and X. Peng, “Model and algorithm based on accurate realization of dwell time in magnetorheological finishing,” Appl. Optics 49(19), 3676–3683 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  28. H. Y. Tam, O. C. Lui, and C. K. Mok, “Robotic polishing of free-form surfaces using scanning paths,” J. Mater. Process. Tech. 95(1)-(3), 191–200 (1999). [CrossRef] [Google Scholar]
  29. C. Wang, W. Yang, Z. Wang, X. Yang, C. Hu, B. Zhong, Y. Guo and Q. Xu, “Dwell-time algorithm for polishing large optics,” Appl. Optics 53(21), 4752–4760 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  30. D. F. Liao, H. Zhao, Z. G. Yuan, and R. Q. Xie, “Improvement of Surface Figure in the Polyurethane Pad Continuous Polishing Process,” Appl. Mech. Mater. 319, 107–112 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  31. T. Suratwala, R. Steele, M. Feit, R. Desjardin, and D. Mason, “Convergent Pad Polishing of Amorphous Silica,” International Journal of Applied Glass Science 3(1), 14–28 (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.