Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15047
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2015.15047
Published online 28 October 2015
  1. Z. A. Otremba, “Modelling of the light transfer in a water column polluted with oil suspension,” J. Eur. Opt. Soc.-Rapid 8, 13067 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  2. U. Frank, “A review of fluorescence spectroscopic method for oil spill source identification,” Toxilogical and Env. Chem. Reviews 2, 163–185 (1978). [CrossRef] [Google Scholar]
  3. C. D. Geddes, and J. R. Lakowicz, Review in fluorescence 2005 (Springer, Heidelberg/Berlin, 2005). [CrossRef] [Google Scholar]
  4. G. G. Guilbault, Practical fluorescence (CRC Press, Boca Raton, 1990). [Google Scholar]
  5. M. Fingas, The Basics of Oil Spill Cleanup (CRC Press, Boca Raton, 2013). [Google Scholar]
  6. M. Fingas, and C. Brown, “Review of oil spill remote sensors,” in Proceedings to Seventh International Conference on Remote Sensing for Marine and Coastal Environments (Environmental Research Institute of Michigan (ERIM), Miami, 2002). [Google Scholar]
  7. T. A. Dolenko, V. V. Fadeev, I. V. Gerdova, S. A. Dolenko, and R. Reuter, “Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks,” Appl. Optics 41(24), 5155–5166 (2002). [CrossRef] [Google Scholar]
  8. J. B. F. Lloyd, “Synchronized excitation of fluorescence emission spectra,” Nature Phys. Sci. 231, 64–65 (1971). [CrossRef] [Google Scholar]
  9. D. Patra, and A. K. Mishra, “Total synchronous fluorescence scan spectra of petroleum products,” Anal. Bioanal. Chem. 373(4)-(5), 304–309 (2002). [CrossRef] [Google Scholar]
  10. L. Poryvkina, S. Babichenko, and O. Davydova, “SFS characterisation of oil pollution in natural water,” in Proceedings to Fifth International Conference on Remote Sensing for Marine and Coastal Environments, 520-524 (Michigan Tech Research Institute, San Diego, 1998). [Google Scholar]
  11. E. Baszanowska, and Z. Otremba, “Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment,” J. Eur. Opt. Soc.-Rapid 9, 14029 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  12. E. Baszanowska, O. Zielinski, Z. Otremba, and H. Toczek, “Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra,” J. Eur. Opt. Soc.-Rapid 8, 13069 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  13. A. Stelmaszewski, “Fluorescence method for determination of oil identity,” Opt. Appl. 304(3), 405–418 (2004). [Google Scholar]
  14. D. Patra, and A. K. Mishra, “Recent developments in multicomponent synchronous fluorescence scan analysis,” Trend. Anal. Chem. 21(12), 787–798 (2002). [CrossRef] [Google Scholar]
  15. M. Shaver, and L. B. McGown, “Fluorescence Studies of Complex Coal Liquid Samples Using the Lifetime Synchronous Spectrum (LiSS),” Appl. Spectrosc. 49(6), 813–818 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  16. Paula G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  17. P. G. Coble, “Marine Optical Biogeochemistry: The Chemistry of Ocean Color,” Chem. Rev. 107(2), 402–418 (2007). [CrossRef] [Google Scholar]
  18. P. G. Coble, “Colored dissolved organic matter in seawater,” in Subsea Optics and Imaging, J. Watson, and O. Zielinski, eds., (1st Edition, Woodhead Publishing, Cambridge, 2013). [Google Scholar]
  19. V. Drozdowska, W. Freda, E. Baszanowska, K. Rudz, M. Darecki, J. Heldt, and H. Toczek, “Spectral properties of natural and oil polluted Baltic seawater - results of measurements and modelling,” Eur. Phys. J.-Spec. Top. 222, 2157–2170 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  20. P. Kowalczuk, J. Ston-Egiert, W. J. Cooper, R. F. Whitehead, and M. J. Durako, “Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy,” Mar. Chem. 96(3), 273–292 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  21. J. H. Christensen, A. B. Hansen, J. Mortensen, and O. Andersen, “Characterization and Matching of Oil Samples Using Fluorescence Spectroscopy and Parallel Factor Analysis,” Anal. Chem. 77(7), 2210–2217 (2005). [CrossRef] [Google Scholar]
  22. E. Baszanowska, Z. Otremba, H. Toczek, and P. Rohde, “Fluorescence spectra of oil after it contacts with aquatic environment,” Journal of KONES Powertrain and Transport 20(3), 29–34 (2013). [CrossRef] [Google Scholar]
  23. Z. Otremba, E. Baszanowska, H. Toczek, P. Rohde, Spectrofluorometry applied to oil-in-water emulsion characterization, Journal of KONES Powertrain and Transport 18(3), 317–321 (2011). [Google Scholar]
  24. M. Ostrowska, “Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea,” Oceanologia 54(4), 545–564 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  25. K. Rudz, H. Toczek, and M. Darecki, “Modelling the influence of oil content on optical properties of sea water in the Baltic Sea,” J. Europ. Opt. Soc. Rap. Public. 8, 13063 (2013). [CrossRef] [Google Scholar]
  26. W. Freda, “Comparison of the spectral-angular properties of light scattered in the Baltic Sea and oil emulsions,” J. Eur. Opt. Soc.- Rapid 9, 14017 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. P. Garaba, T. H. Badewien, A. Braun, A.-C. Schulz, and O. Zielinski, “Using ocean colour remote sensing products to estimate turbidity at the Spiekeroog Wadden Sea time series station,” J. Eur. Opt. Soc.-Rapid 9, 14020 (2014). [CrossRef] [Google Scholar]
  28. Horiba Scientific, Operation manual (2011). [Google Scholar]
  29. J. Para, P. G. Coble, B. Charriere, M. Tedetti, C. Fontana, and R. Sempere, “Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the north-western Mediterranean Sea,” Biogeosciences 7, 4083–4103 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.