Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15043 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2015.15043 | |
Published online | 15 September 2015 |
- A. Liu, H. Huang, L. Chin, Y. Yu, and X. Li, “Label-free detection with micro optical fluidic systems (MOFS): a review,” Anal. Bioanal. Chem. 391, 2443–2452 (2008). [CrossRef] [Google Scholar]
- H. K. Hunt, and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- M. Nirschl, F. Reuter, and J. Vörös, “Review of transducer principles for label-free biomolecular interaction analysis,” Biosensors 1, 70–92 (2011). [CrossRef] [Google Scholar]
- S. Z. Oo, R. Chen, S. Siitonen, V. Kontturi, D. Eustace, J. Tuominen, S. Aikio, and M. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 18484–18491 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- X. Fan, and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5, 591–597 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- A. M. Michaels, M. Nirmal, and L. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939 (1999). [CrossRef] [Google Scholar]
- S. Nie, and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275, 1102–1106 (1997). [CrossRef] [Google Scholar]
- A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver nanoparticles on porous silicon: approaching single molecule detection in resonant SERS regime,” J. Phys. Chem. C 117, 20139–20145 (2013). [CrossRef] [Google Scholar]
- G. C. Schatz, M. A. Young, and R. P. Van Duyne, “Electromagnetic mechanism of SERS,” Top. Appl. Phys. 103, 19–45 (2006). [CrossRef] [Google Scholar]
- K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtulus, S. H. Lee, N. C. Lindquist, S. Oh, et al., “Recent progress in SERS biosensing,” Phys. Chem. Chem. Phys. 13, 11551–11567 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. L. Haynes, and R. P. Van Duyne, “Plasmon-Sampled Surface- Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003). [CrossRef] [Google Scholar]
- T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, “Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons,” Appl. Spectrosc. 54, 371–377 (2009). [Google Scholar]
- L. A. Dick, A. J. Haes, and R. P. Van Duyne, “Distance and orientation dependence of heterogeneous electron transfer: a surface-enhanced resonance Raman scattering study of cytochrome c bound to carboxylic acid terminated alkanethiols adsorbed on silver electrodes,” J. Phys. Chem. B 104, 11752–11762 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. Van Duyne, “Surface-enhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces,” J. Phys. Chem. B 105, 6907–6915 (2001). [CrossRef] [Google Scholar]
- L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal film over nanosphere (MFON) electrodes for surfaceenhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” J. Phys. Chem. B 106, 853–860 (2002). [CrossRef] [Google Scholar]
- I. M. White, S. H. Yazdi, and W. Y. Wei, “Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis,” Microfluid. Nanofluid. 13, 205–216 (2012). [CrossRef] [Google Scholar]
- G. L. Liu, and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett. 87, 074101 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- A. Lamberti, A. Virga, A. Angelini, A. Ricci, E. Descrovi, M. Cocuzza, and F. Giorgis, “Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration,” RSC Advances 5, 4404–4410 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- J. Teng, J. Chu, C. Liu, T. Xu, Y. Lien, J. Cheng, S. Huang, et al., “Fluid Dynamics in Microchannels,” in Fluid Dynamics, Computational Modeling and Applications L.H. Juarez, ed., 403–436 (InTech, Rijeka, 2012). [Google Scholar]
- M. Zimmermann, E. Delamarche, M. Wolf, and P. Hunziker, “Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays,” Biomed. Microdevices 7, 99–110 (2005). [CrossRef] [Google Scholar]
- N. Orgovan, D. Patko, C. Hos, S. Kurunczi, B. Szabo, J. J. Ramsden, and R. Horvath, “Sample handling in surface sensitive chemical and biological sensing: A practical review of basic fluidics and analyte transport,” Adv. Colloid Interfac. 211, 1–16 (2014). [CrossRef] [Google Scholar]
- J. Koplik, J. R. Banavar, and J. F. Willemsen, “Molecular dynamics of fluid flow at solid surfaces,” Phys. Fluids A - Fluid. 1, 781–794 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- J. Lauri, M. Wang, M. Kinnunen, and R. Myllylä, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” in Biomed. Optics 2008 68630F–68630F-8 (2008). [Google Scholar]
- J. Lauri, J. Czajkowski, R. Myllylä, and T. Fabritius, “Measuring flow dynamics in a microfluidic chip using optical coherence tomography with 1 µm axial resolution,” Flow Meas. Instrum. 43, 1–5 (2015). [CrossRef] [Google Scholar]
- M. L. Yarmush, D. B. Patankar, and D. M. Yarmush, “An analysis of transport resistances in the operation of BIAcoreâˇD´c; implications for kinetic studies of biospecific interactions,” Mol. Immunol. 33, 1203–1214 (1996). [CrossRef] [Google Scholar]
- M. Stenberg, and H. Nygren, “Kinetics of antigen-antibody reactions at solid-liquid interfaces,” J. Immunol. Methods 113, 3–15 (1988). [CrossRef] [Google Scholar]
- T. E. Starr, and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- T. Gervais, and K. F. Jensen, “Mass transport and surface reactions in microfluidic systems,” Chem. Eng. Sci., 61, 1102–1121 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. Lionello, J. Josserand, H. Jensen, and H. H. Girault, “Dynamic protein adsorption in microchannels by “stop-flow” and continuous flow,” Lab Chip 5, 1096–1103 (2005). [CrossRef] [Google Scholar]
- G. Hu, Y. Gao, and D. Li, “Modeling micropatterned antigenantibody binding kinetics in a microfluidic chip,” Biosens. Bioelectron. 22, 1403–1409 (2007). [CrossRef] [Google Scholar]
- D. G. Myszka, T. A. Morton, M. L. Doyle, and I. M. Chaiken, “Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor,” Biophys. Chem. 64, 127–137 (1997). [CrossRef] [Google Scholar]
- K. Lebedev, S. Mafe, and P. Stroeve, “Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel,” J. Colloid Interface Sci. 296, 527–537 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145, 229–240 (1991). [CrossRef] [Google Scholar]
- R. W. Glaser, “Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 152–161 (1993). [CrossRef] [Google Scholar]
- L. L. Christensen, “Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation,” Anal. Biochem. 249, 153–164 (1997). [CrossRef] [Google Scholar]
- R. W. Glaser, “Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics,” Anal. Biochem. 213, 152–161 (1993). [CrossRef] [Google Scholar]
- P. M. Richalet-Secordel, N. Rauffer-Bruyere, L. L. Christensen, B. Ofenloch-Haehnle, C. Seidel, and M. H. Van Regenmortel, “Concentration measurement of unpurified proteins using biosensor technology under conditions of partial mass transport limitation,” Anal. Biochem. 249, 165–173 (1997). [CrossRef] [Google Scholar]
- L. Lee, “Adsorption: the solid-fluid interface,” in Molecular Thermodynamics of Nonideal Fluids H. Brenner, ed., 424–462 (Butterworth-Heinemann, Boston, 1988). [Google Scholar]
- D. Murzin, “Physisorption and chemisorption,” in Engineering Catalysis, 16 (De Gruyter, Berlin, 2013). [Google Scholar]
- W. Hüttner, K. Christou, A. Göhmann, V. Beushausen, and H. Wackerbarth, “Implementation of substrates for surfaceenhanced Raman spectroscopy for continuous analysis in an optofluidic device,” Microfluid. Nanofluid. 12, 521–527 (2012). [CrossRef] [Google Scholar]
- R. Liedert, L. K. Amundsen, A. Hokkanen, M. Mäki, A. Aittakorpi, M. Pakanen, J. R. Scherer, et al., “Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria,” Lab Chip 12, 333–339 (2012). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.