Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15042
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2015.15042
Published online 30 August 2015
  1. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  2. J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wavefront sensors in strong scintillation,” Proc. SPIE. 4839, 217–227 (2003) [NASA ADS] [CrossRef] [Google Scholar]
  3. J. Notaras, and C. Paterson, “Point-diffraction interferometer for atmospheric adaptive optics in strong scintillation,” Opt. Commun. 281, 360–367 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  4. R.N. Smartt, and W.H. Steel, “Theory and application of pointdiffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975). [NASA ADS] [CrossRef] [Google Scholar]
  5. H. Kihm, and Y. W. Lee, “Double-pass point diffraction interferometer,” Meas. Sci. Technol. 21, 105307 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  6. C. R. Mercer, and K. Creath, “Liquid-crystal point-diffraction interferometer for wave-front measurements,” Appl. Optics 35, 1633–1642 (1996). [CrossRef] [Google Scholar]
  7. C. R. Mercer, and K. Creath, “Liquid-crystal point-diffraction interferometer,” Opt. Lett. 19, 916–918 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  8. M. J. Guardalben, and N. Jain, “Phase-shift error as a result of molecular alignment distortions in a liquid-crystal point- diffraction interferometer,” Opt. Lett. 25, 1171–1173 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. Paturzo, F. Pignatiello, S. Grilli, S. D. Nicola, and P. Ferraro, “Phase-shifting point-diffraction interferometer developed by using the electro-optic effect in ferroelectric crystals,” Opt. Lett. 31, 3597–3599 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. H. Furuhashi, A. Shibata, Y. Uchida, K. Matsuda, and C. P. Grover, “A point diffraction interferometer with random-dot filter,” Opt. Commun. 237, 17–24 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. V. R. K. Murty, “A compact radial shearing interferometer based on the law of refraction,” Appl. Optics 3, 853–857 (1964). [NASA ADS] [CrossRef] [Google Scholar]
  12. N. T. Gu, L. H. Huang, Z. P. Yang, and C. H. Rao, “A single-shot common-path phase-stepping radial shearing interferometer for wavefront measurements,” Opt. Express 19, 4703–4713 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  13. Y. Liu, F. Z. Bai, Y. Q. Wu, S. M. Gan, Z. Liu, and X. Y. Bao, “A common-path radial shearing phase-shifting interferometer with adjustable fringe contrast,” Acta Optica Sinica 33, 0622003 (2013). [CrossRef] [Google Scholar]
  14. F. Z. Bai, X. Q. Wang, K. Z. Huang, N. T. Gu, S. M. Gan, and F. Tian, “Analysis of spatial resolution and pinhole size for single-shot point-diffraction interferometer using in closed-loop adaptive optics,” Opt. Commun. 297, 27–31 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  15. F. Z. Bai, and C. H. Rao, “Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using selfreferencing interferometer wavefront sensor,” Acta Phys. Sin-CH ED 59, 8280–8286 (2010) [CrossRef] [Google Scholar]
  16. D. D. Wang, Y. Y. Yang, C. Chen, and Y. M. Zhuo, “Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces,” Appl. Optics 50, 2342–2348 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  17. M. Takeda, H. Ina, and S. Koboyashi, “Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982) [NASA ADS] [CrossRef] [Google Scholar]
  18. M. Takeda, and K. Mutoh, “Fourier transform profilometry for the automatic measurement 3-D object shapes,” Appl. Optics 22, 3977–3982 (1983). [NASA ADS] [CrossRef] [Google Scholar]
  19. F. Z. Bai, and C. H. Rao, “Experimental validation of closed-loop adaptive optics based on a self-referencing interferometer wavefront sensor and a liquid-crystal spatial light modulator,” Opt. Commun. 283, 2782–2786 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  20. R. J. Green, J. G. Walker, and D. W. Robinson, “Investigation of the Fourier-transform method of fringe pattern analysis,” Opt. Lasers Eng. 8, 29–44 (1988). [CrossRef] [Google Scholar]
  21. M. Kujawinska, and J. Wojciak, “High accuracy Fourier transform fringe pattern analysis,” Opt. Lasers Eng. 14, 325–339 (1991). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.