Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15025 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.2971/jeos.2015.15025 | |
Published online | 17 May 2015 |
- N. Bhatia, and J. John, “Multimode interference devices with single-mode-multimode-multimode fiber structure,” Appl. Opt. 53, 5179–5186 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taperbased Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53, 2691–2695 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- P. Zu, C. C. Chan, G. W. Koh, W. S. Lew, Y. Jin, H. F. Liew, W. C. Wong, et al., “Enhancement of the sensitivity of magnetooptical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer,” Sensor. Actuat. BChem. 191, 19–23 (2014). [CrossRef] [Google Scholar]
- B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, et al., “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38, No. 19, 3765–3768 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- R. Zhang, T. Liu, Q. Han, Y. Chen, and L. Li, “U-bent single-modemultimode- single-mode fiber optic magnetic field sensor based on magnetic fluid,” Appl. Phys. Express 7, 072501 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- J. Tang, S. Pu, S. Dong, and L. Luo, “Magnetic field sensing based on magnetic-fluid-clad multimode-singlemode-multimode fiber structures,” Sensors 14, 19086–19094 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- J. Wu, Y. Miao, W. Lin, B. Song, K. Zhang, H. Zhang, B. Liu, et al., “Magnetic-field sensor based on core-offset tapered optical fiber and magnetic fluid,” J. Opt. 16, 075705 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- J. Wu, Y. Miao, W. Lin, K. Zhang, B. Song, H. Zhang, B. Liu, and J. Yao, “Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid,” IEEE Photonics Technol. Lett. 26, 1581–1584 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- S. Pu, and S. Dong, “Magnetic field sensing based on magneticfluid- clad fiber-optic structure with up-tapered joints,” IEEE Photonics J. 6, 5300206 (2014). [Google Scholar]
- A. Layeghi, H. Latifi, and O. Frazao, “Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid,” IEEE Photonics Technol. Lett. 26, 1904–1907 (2014). [CrossRef] [Google Scholar]
- Y. Miao, J. Wu, W. Lin, B. Song, H. Zhang, K. Zhang, B. Liu, et al., “Magnetic field tunability of square tapered no-core fibers based on magnetic fluid,” J. Lightwave Technol. 32, 4600–4605 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- J. Wu, Y. Miao, B. Song, W. Lin, H. Zhang, K. Zhang, B. Liu and J. Yao, “Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid,” Appl. Phys. Lett. 104, 252402 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- G. Huang, B. Zhou, Z. Chen, H. Jiang, and X. Xing, “Magnetic-field sensor utilizing the ferrofluid and thin-core fiber modal interferometer,” IEEE Sens. J. 15, 333–336 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- B. Song, Y. Miao, W. Lin, H. Zhang, B. Liu, J. Wu, H. Liu and D. Yan, “Loss-based magnetic field sensor employing hollow core fiber and magnetic fluid,” IEEE Photonics Technol. Lett. 26, 2283–2286 (2014). [CrossRef] [Google Scholar]
- H. Chen, S. Li, J. Li, and Z. Fan, “Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers,” IEEE Photonics Technol. Lett. (2015), article in press. [Google Scholar]
- R. Gao, Y. Jiang, and G. Li, “A sandwich structure for the magnetic field detection with supermodes interference,” IEEE Photonics Technol. Lett. 27, 455–458 (2015). [Google Scholar]
- S. Pu, S. Dong, and J. Huang, “Tunable slow light based on magnetic-fluid infiltrated photonic crystal waveguides,” J. Opt. 16, 045102 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Zhao, M. Tang, F. Gao, P. Zhang, L. Duan, B. Zhu, S. Fu, et al., “Temperature compensated magnetic field sensing using dual Sbend structured optical fiber modal interferometer cascaded with fiber Bragg grating,” Opt. Express 22, 27515–27523 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- X. Li, and H. Ding, “Temperature insensitive magnetic field sensor based on ferrofluid clad microfiber resonator,” IEEE Photonics Technol. Lett. 26, 2426–2429 (2014). [Google Scholar]
- S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Temperature and surrounding refractive index insensitive cascaded long period grating chemical sensor,” Proc. SPIE 9157, 91574J (2014). [NASA ADS] [Google Scholar]
- R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22, 15697–15709 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22, 20260–20267 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensor. Actuat. BChem. 176, 1121–1127 (2013). [CrossRef] [Google Scholar]
- J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, “Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure,” Sensor. Actuat. B-Chem. 198, 384–387 (2014). [CrossRef] [Google Scholar]
- C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Zhao, D. Wu, R. Lv, and Y. Ying, “Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field,” IEEE Trans. Magn. 50, 4600205 (2014). [Google Scholar]
- S. Y. Yang, J. J. Chieh, H. E. Horng, C.-Y. Hong, and H. C. Yang, “Origin and applications of magnetically tunable refractive index of magnetic fluid films,” Appl. Phys. Lett. 84, 5204–5206 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Hong, S. Y. Yang, H. E. Horng, and H. C. Yang, “Control parameters for the tunable refractive index of magnetic fluid films,” J. Appl. Phys. 94, 3849–3852 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Zhao, D. Wu and R. Q. Lv “Magnetic field sensor based on photonic crystal fiber taper coated with ferrofluid,” IEEE Photonics Technol. Lett. 27, 26–29 (2015). [Google Scholar]
- W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103, 151101 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- T. G. Liu, Y. F. Chen, Q. Han, and X. Y. Lv “Magnetic field sensor based on U-bent single-mode fiber and magnetic fluid,” IEEE Photonics J. 6, 5300307 (2014). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.