Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15024
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2015.15024
Published online 07 May 2015
  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  2. B. Ferguson, and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  3. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin (BSA) and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320, 42–48 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  4. S. Ohno, A. Hamano, K. Miyamoto, C. Suzuki, and H. Ito, “Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source,” J. Eur. Opt. Soc.-Rapid 4, 09012 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. P. U. Jepsen, D. G. Coole, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011). [CrossRef] [Google Scholar]
  7. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency-tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  8. K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, et al., “Difference-frequency terahertzwave generation from 4-dimethylamino-N-methyl-4-stilbazoliumtosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 1065–1067 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  9. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasiphase- matched GaP for 1.55 _m pumping,” Appl. Phys. Lett. 88, 071118 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  11. K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, et al. “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  12. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  13. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertzwave generation by GaP rib waveguides via collinear phasematched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. Coleman, and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  16. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15, 16308–16315 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. Staus, T. Kuech, and L. McCaughan, “Continuously phasematched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  18. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009). [CrossRef] [Google Scholar]
  19. Y. H. Avetisyan, “Terahertz-wave surface-emitted differencefrequency generation without quasi-phase-matching technique,” Opt. Lett. 35, 2508–2510 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  20. K. Saito, T. Tanabe, and Y. Oyama, “Polarization selective terahertz-wave generation from GaP ridge waveguide under collinear phase-matched difference-frequency mixing,” Jpn. J. Appl. Phys. 53, 102102 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  21. K. Saito, T. Tanabe, and Y. Oyama, “THz-wave generation from GaP THz photonic crystal waveguides under difference-frequency mixing,” Opt. Photon. J. 2, 201–205 (2012) [CrossRef] [Google Scholar]
  22. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  23. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  24. R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel, M. Lipson, and L. C. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at _ = 1550 nm,” Opt. Express 15, 17967 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  26. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, et al., “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  27. C. A. Barrios, and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  28. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40, 862–863 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  29. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, et al.,“Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  30. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  31. J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  32. A. B. Fallahkhair, K. S. Li. and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  33. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids,” Applied Optics 12, 398–406 (1973). [NASA ADS] [CrossRef] [Google Scholar]
  34. K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz-wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  35. E. D. Palik (ed.), Handbook of optical constants of solids (Academic Press, New York, 1985). [Google Scholar]
  36. V. A. Felipe, and L. M. Hayden, “Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length,” Opt. Express 21, 24398–24412 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  37. R. W. Boyd, Nonlinear optics (Third edition, Academic Press, New York, 2008). [Google Scholar]
  38. W. L. Faust, and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys Rev. Lett. 17, 1265–1268 (1966). [CrossRef] [Google Scholar]
  39. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104, 221105 (2014). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.