Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15026
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2015.15026
Published online 21 May 2015
  1. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [NASA ADS] [CrossRef] [Google Scholar]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [Google Scholar]
  3. M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5, 322–324 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. Jonás and P. Zemánek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis. 29, 4813–4851 (2008). [CrossRef] [Google Scholar]
  5. F. Laurell, M. G. Roelofs, W. Bindloss, H. Hsiung, A. Suna, and J. D. Bierlein, “Detection of ferroelectric domain reversal in KTiOPO4 waveguides,” J. Appl. Phys. 71, (1992). [Google Scholar]
  6. S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Apl. Phys. Lett. 92, 232902-232902-3 (2008). [CrossRef] [Google Scholar]
  7. B. I. Sturman and V. M. Fridkin, The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, Philadelphia, 1992). [Google Scholar]
  8. J. Villarroel, H. Burgos, Á. García-Cabañes, M. Carrascosa, A. Blázquez-Castro, and F. Agulló-López, “Photovoltaic versus optical tweezers,” Opt. Express 19, 24320–24330 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  9. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 75, 241909-241909-3 (2007). [Google Scholar]
  10. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17, 9981–9988 (2009). [CrossRef] [Google Scholar]
  11. M. Esseling, F. Holtmann, M. Woerdemann, and C. Denz, “Two-dimensional dielectrophoretic particle trapping in a hybrid crystal/PDMS-system,” Opt. Express 18, 17404–17411 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. C. Arregui, J. B. Ramiro, Ángel Alcázar, Ángel Méndez, H. Burgos, Ángel García-Cabañes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22, 29099–29110 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. Glaesener, M. Esseling, and C. Denz, “Multiplexing and switching of virtual electrodes in optoelectronic tweezers based on lithium niobate,” Opt. Lett. 37, 3744–3746 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  14. M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada, et al. “Highly reduced iron-doped lithium niobate for optoelectronic tweezers,” Appl. Phys. B 113 191–197 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  15. H. Burgos, M. Jubera, J. Villarroel, A. García-Cabañes, F. Agulló- López, and M. Carrascosa, “Role of particle anisotropy and deposition method on the patterning of nano-objects by the photovoltaic effect in LiNbO3,” Opt. Mater. 35, 1700–1705 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on Z-cut lithium niobate,” Appl. Phys. Lett. 103, 061115–061115-4 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  17. M. Jubera, A. García-Cabañes, J. Olivares, A. Alcazar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields,” Opt. Lett. 39 649–652 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  18. J. Matarrubia, A. García-Cabañes, J. L. Plaza, F. Agulló-López, and M. Carrascosa, “Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size,” J. Phys. D Appl. Phys. 47, 265101 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals- 2. Beam coupling - light amplification,” Ferroelectrics 22, 961–964 (1979). [Google Scholar]
  20. M. Carrascosa and F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  21. L. Miccio, P. Memmolo, S. Grilli, and P. Ferraro, “All-optical microfluidic chips for reconfigurable dielectrophoretic trapping through SLM light induced patterning,” Lab. Chip. 12, 4449–4454 (2012). [CrossRef] [Google Scholar]
  22. F. Agulló-López, G. Calvo, and M. Carrascosa, “Fundamentals of Photorefractive Phenomena” in Photorefractive Materials and Their Applications 1, P. Günter and J.-P. Huignard, eds., 43–82 (Springer, New York, 2006). [CrossRef] [Google Scholar]
  23. H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press Cambridge, New York, 1978). [Google Scholar]
  24. J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng. 8, 425–454 (2006). [CrossRef] [Google Scholar]
  25. P. Mokrý, M. Marvan, and J. Fousek, “Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films,” J. Appl. Phys. 107, 094104–094104–10 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.