Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14048
Number of page(s) 4
DOI https://doi.org/10.2971/jeos.2014.14048
Published online 29 October 2014
  1. A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light”, Adv. At. Mol. Opt. Phys. 46, 191–242 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media”, Rev. Mod. Phys. 77, 633–673 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  3. L.V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas”, Nature 397, 594–598 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  4. M. Fleischhauer, and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency”, Phys. Rev. Lett. 84, 5094–5097 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L.V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses”, Nature 409, 490–493 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium”, Nature 426, 638–641 (2003). [CrossRef] [Google Scholar]
  7. C. L. Garrido Alzar, M.A.G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency”, Am. J. Phys. 70, 37–41 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  8. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry”, Phys. Rev. Lett. 99, 147401 (2007). [CrossRef] [Google Scholar]
  9. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon- Induced Transparency in Metamaterials”, Phys. Rev. Lett. 101, 047401 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency”, Phys. Rev. Lett. 101, 253903 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  11. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency”, Phys. Rev. Lett. 102, 053901 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  12. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency”, Appl. Phys. Lett. 94, 211902 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  13. N. Niakan, M. Askari, and A. Zakery, “High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials”, J. Opt. Soc. Am. B. 29, 2329–2333 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  14. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, et al., “Classical Analogue of Electromagnetically Induced Transparency with a Metal-Superconductor Hybrid Metamaterial”, Phys. Rev. Lett. 107, 043901 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial”, Phys. Rev. B. 79, 085111 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial”, Phys. Rev. B. 80, 153103 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  17. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Gissen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit”, Nat. Mater. 8, 758–762 (2009). [CrossRef] [Google Scholar]
  18. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities”, Nano Lett. 9, 1663–1667 (2009). [Google Scholar]
  19. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators”, Appl. Phys. Lett. 84, 2943–2945 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  20. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials”, Phys. Rev. E 71, 036617 (2005). [CrossRef] [Google Scholar]
  21. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, “Large group delay in a microwave metamaterial analog of electromagnetically induced transparency”, Appl. Phys. Lett. 97, 241904 (2010). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.