Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14047
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2014.14047
Published online 26 October 2014
  1. X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales”, Aust. J. Mar. Fresh. Res. 35, 611–618 (1984). [CrossRef] [Google Scholar]
  2. R. Millard, J. Toole, and M. Swartz, “A fast responding temperature measurement system for CTD applications”, Ocean Eng. 7, 413–427 (1980). [NASA ADS] [CrossRef] [Google Scholar]
  3. C. T. Swift, “Passive microwave remote sensing of the ocean – A review”, Bound-Lay. Meteorol. 18, 25–54 (1980). [NASA ADS] [CrossRef] [Google Scholar]
  4. D. A. Pereira, O. Frazao, and J. L. Santos, “Fibre Bragg grating sensing system for simultaneous measurement of salinity and temperature”, Opt. Eng. 43, 299–304 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  5. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor”, Opt. Express 15, 7888–7893 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. F. Xu, and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator”, Appl. Phys. Lett. 92, 101126 (2008). [CrossRef] [Google Scholar]
  7. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor”, Opt. Express 16, 1062–1067 (2008). [CrossRef] [Google Scholar]
  8. X. Guo, and L. M. Tong, “Supported microfiber loops for optical sensing”, Opt. Express 16, 14429–14434 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  9. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity”, Opt. Express 17, 1447–1453 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  10. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °C”, Opt. Express 17, 21551–21559 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  11. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer”, Opt. Lett. 34, 617–619 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement”, Opt. Express 18, 14245–14250 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  13. N. Lou, R. Jha, J. L Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fiber for stable devices”, Opt. Lett. 35, 571–573 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  14. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping”, Opt. Express 19, 7596–7602 (2011). [CrossRef] [Google Scholar]
  15. C. R. Liao, D. M. Wang, X. Y. He, and M. W. Yang, “Twisted optical microfibers for refractive index sensing”, IEEE Photonic. Technol. Lett. 23, 848–850 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. W. Harun, K. S. Lim, S. S. A. Damanhur, and H. Ahmad, “Microfiber loop resonator based temperature sensor”, J. Europ. Opt. Soc. Rap. Public. 6, 11026 (2011). [CrossRef] [Google Scholar]
  17. K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing”, Sensors 12, 11782–11789 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  18. L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity”, Opt. Express 20, 10180–10185 (2012). [CrossRef] [Google Scholar]
  19. J. H. Wo, G. H. Wang, Y. Cui, Q. Z. Sun, R. B. Liang, P. P. Shum, and D. M. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer”, Opt. Lett. 37, 67–69 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  20. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber”, IEEE Photonic. Technol. Lett. 24, 1872–1874 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  21. S. S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing”, Appl. Opt. 51, 3017–3023 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  22. G. Y. Chen, M. Ding, T. P. Newson, and G. Brambilla, “A review of microfiber and nanofiber based optical sensors”, Open Optic. J. 7, 32–57 (2013). [CrossRef] [Google Scholar]
  23. L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler”, IEEE Photonic. Technol. Lett. 25, 228–230 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  24. G. Y. Chen, G. Brambilla, and T. P. Newson, “Inspection of electrical wires for insulation faults and current surges using sliding temperature sensor based on optical Microfibre coil resonator”, Electron. Lett. 49, 46–47 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  25. M. Z. Muhammad, A. A. Jasim, H. Ahmad, H. Arof, and S. W. Harun, “Non-adiabatic silica microfiber for strain and temperature sensors”, Sensor. Actuat. A-Phys. 192, 130–132 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  26. Y. S. Chiam, K. S. Lim, S. W. Harun, S. N. Gan, and S. W. Phang, “Conducting polymer coated optical microfiber sensor for alcohol detection”, Sensor. Actuat. A-Phys. 205, 58–62 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  27. Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, et al., “Hybrid graphene-microfiber waveguide for chemical gas sensing”, IEEE J. Sel. Top. Quant. 20, 4400206 (2014). [Google Scholar]
  28. J. Y. Lou, Y. P. Wang, and L. M. Tong, “Microfiber optical sensors: A review”, Sensors 14, 5823–5844 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  29. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfibre loop resonator: theory, experiment, and application”, J. Lightwave Technol. 24, 242–250 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  30. X. Zeng, Y. Wu, C. L. Hou, J. Bai, and G. G. Yang, “A temperature sensor based on optical microfibre knot resonator”, Opt. Commun. 282, 3817–3819 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  31. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfibre knot resonators”, Opt. Express 17, 18142–18147 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  32. Y. Chen, Y. Ming, W. Guo, F. Xu, and Y. Q. Lu, “Temperature characteristics of microfiber coil resonators embedded in teflon”, in Proceedings to the Communications and Photonics Conference and Exhibition, ACP. Asia, 1–6 (Shanghai Jiaotong University, Shanghai, 2011). [Google Scholar]
  33. Y. Wu, L. Jia, T. H. Zhang, Y. J. Rao, and Y. Gong, “Microscopic multi-point temperature sensing based on microfiber double-knot resonators”, Opt. Commun. 285, 2218–2222 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  34. C. Y. Chao, and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance”, Appl. Phys. Lett. 83, 1527–1529 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  35. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications”, IEEE J. Sel. Top. Quant. 12, 134–142 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  36. H. X. Yi, D. S. Citrin, and Z. P. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection”, IEEE J. Quantum Elect. 47, 354–358 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  37. C. Qiu, T. Hu, P. Yu, A. Shen, F. Wang, X. Q. Jiang, and J. Y. Yang, “A temperature sensor based on silicon eye-like microring with sharp asymmetric fano resonance”, in Proceedings to the 2012 IEEE 9th International Conference on Group IV Photonics (GFP), 123–125 (IEEE, San Diego, 2012). [Google Scholar]
  38. C. Y. Chao, and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications”, J. Lightwave Technol. 24, 1395–1402 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  39. O. Schwelb, “Transmission, group delay, and dispersion in singlering optical resonators and add/drop filters-a tutorial overview”, J. Lightwave Technol. 22, 1380–1394 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  40. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1991). [Google Scholar]
  41. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides”, Opt. Express 12, 1025–1035 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  42. X. H. Quan, and E. S. Fry, “Empirical equation for the index of refraction of seawater”, Appl. Opt. 34, 3477–3480 (1995). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.