Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14049 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2014.14049 | |
Published online | 29 October 2014 |
- P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media”, Appl. Phys. Lett. 32, 104–105 (1978). [CrossRef] [Google Scholar]
- C. Vandenbem, “Electromagnetic surface waves of multilayer stacks: coupling between guided modes and Bloch modes”, Opt. Lett. 33, 2260–2262 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, et al., “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation”, J. Opt. Soc. Am. B 27, 1617–1625 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, et al., “Guided Bloch Surface Waves on Ultrathin Polymeric Ridges”, Nano Lett. 10, 2087–2091 (2010). [Google Scholar]
- A. Angelini, E. Barakat, P. Munzert, L. Boarino, N. De Leo, E. Enrico, F. Giorgis, H. P. Herzig, et al., “Focusing and Extraction of Light mediated by Bloch Surface Waves”, Sci. Rep. 4, (2014). [CrossRef] [Google Scholar]
- L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. Peter Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens”, Light Sci. Appl. 3, e124 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. E. Marhic, “Mode-coupling analysis of bending losses in IR metallic waveguides”, Appl. Optics 20, 3436–3441 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- E. A. J. Marcatili, and S.E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance”, Bell Syst. Tech. J. 48, 2161–2188 (1969). [CrossRef] [Google Scholar]
- H. F. Taylor, “Losses at corner bends in dielectric waveguides”, Appl. Optics 16, 711–716, (1977). [NASA ADS] [CrossRef] [Google Scholar]
- M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation”, IEEE J. Quantum Elect. 11, 75–83 (1975). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Zhu, C. E. Garcia-Ortiz, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect”, Appl. Phys. Lett. 103, 061108–5 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- L. Zhang, J. Yang, X. Fu, and M. Zhang, “Graphene disk as an ultra compact ring resonator based on edge propagating plasmons”, Appl. Phys. Lett. 103, 163114–5 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J. C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentumspace spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides”, Phys. Rev. B 87, 195428 (2013). [CrossRef] [Google Scholar]
- D. Courjon, and C. Bainier, “Near field microscopy and near field optics”, Rep. Prog. Phys. 57, 989 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing”, Nat. Photonics 3, 388–394 (2009). [Google Scholar]
- L. Novotny, “The history of near-field optics”, in Progress in Optics, E. Wolf, ed., 137–184 (Elsevier, Amsterdam, 2007). [Google Scholar]
- T. SFEZ, Investigation of Surface Electromagnetic Waves with Multi-Heterodyne Scanning Near-Field Optical Microscopy, (PhD Dissertation, École Polytechnique Fédérale de Lausanne, 2010). [Google Scholar]
- P. Tortora, Optical Properties of Nano-Structured Materials Studied by Means of Interferometric Techniques (PhD Dissertation, Universiity of Neuchatel, 2005). [Google Scholar]
- P. S. Carney, B. Deutsch, A. A. Govyadinov, and R. Hillenbrand, “Phase in Nanooptics”, ACS Nano 6, 8–12 (2012). [CrossRef] [Google Scholar]
- T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, et al., “Two-dimensional optics on silicon nitride multilayer: Refraction of Bloch surface waves”, Appl. Phys. Lett. 96, 151101–151103 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, 2013). [Google Scholar]
- S. Kawakami, “Mode conversion losses of randomly bent, singly and doubly clad waveguides for single mode transmission”, Appl. Optics 15, 2778–2784 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- E. G. Neumann, “Curved dielectric optical waveguides with reduced transition losses”, Microwaves, Optics and Antennas, IEE Proceedings H 129, 278–280 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, Berlin, 2009). [Google Scholar]
- D. Marcuse, “Bending Losses of the Asymmetric Slab Waveguide”, Bell Syst. Tech. J. 50, 2551–2563 (1971). [CrossRef] [Google Scholar]
- R. W. Neumann, “Sharp bends with low losses in dielectric optical waveguides”, Appl. Optics 22, 1016–1022 (1983). [NASA ADS] [CrossRef] [Google Scholar]
- A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007). [Google Scholar]
- K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Ctyroý, “Analytic approach to dielectric optical bent slab waveguides”, Opt. Quant. Electron. 37, 37–61 (2005). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.