Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14046
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2014.14046
Published online 24 October 2014
  1. J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, “Novel thermal properties of nanostructured materials”, J. Metastab. Nanocryst. 2, 629–634 (1999). [Google Scholar]
  2. R. G. Fuentes, J. A. P. Rojas, J. L. J. Pérez, and J. F. S. Ramirez, “Study of thermal diffusivity of nanofluids with bimetallic NPs with Au (core)/Ag (shell) structure”, Apsusc. 255(3), 781–783 (2008). [Google Scholar]
  3. H. Huang, and Y. Yang, “Preparation of silver nanoparticles in inorganic clay suspensions”, Compos. Sci. Technol. 68, 2948–2953 (2008). [CrossRef] [Google Scholar]
  4. R. A. Patakfalvi, A. Oszka, and I. Dekany, “Synthesis and characterization of silver nanoparticles/kaolinite composites”, Colloid. Surface. A 220, 45–54(2003). [CrossRef] [Google Scholar]
  5. M. B. Ahmad, K. Shameli, M. Darroudi, and W. Yunus, “Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method”, American Journal of Applied Sciences, 6(11), 1909–1914 (2009). [Google Scholar]
  6. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, “Effect of aggregation on thermal conduction in colloidal nanofluids”, Appl. Phys. Lett. 89(14), 143119 (2006). [Google Scholar]
  7. S. A. Putnam, D. G. Cahill, and P. V. Braun, “Thermal conductivity of nanoparticle suspensions”, J. Appl. Phys. 99, 084308 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  8. P. Keblinski, J. A. Eastman, and D. G. Cahill “Nanofluids for thermal transport”, Mater. Today 8(6), 36–44 (2005). [CrossRef] [Google Scholar]
  9. S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2 - water based nanofluids”, Int. J. Therm. Sci. 44, 367–373 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. C. Kleinstreuer, and Y. Feng, “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review”, Nanoscale Res. Lett. 6, 229 (2011). [Google Scholar]
  11. S. M. S. Murshed, K. C. Leong, and C. Yang, “Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique”, J. Phys. D: Appl. Phys. 39, 5316–5322 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  12. R. Zamiri, B. Z. Azmi, E. Shahriari, and K. Naghavi, “Thermal diffusivity measurement of silver nanofluid by thermal lens technique”, J. Laser Appl. 23, 042002 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  13. X. Zhang, H. Gu, and M. Fujii, “Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles”, J. Appl. Phys. 100, 044325 (2006). [Google Scholar]
  14. J. Shen, and A. Mandelis, “Thermal-wave resonator cavity”, Rev. Sci. Instrum. 66, 4999–5005 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  15. B. Z. Azmi, M. Noroozi, Z. Rizwan, Z. A. Sulaiman, Z. A. Wahab, and M. M. Moksin, “Simple TWRC technique by using optical fiber”, Infrared Phys. Techn. 51(3), 270–275 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Noroozi, B. Z. Azmi, and M. M. Moksin, “The reliability of optical fiber-TWRC technique in liquids thermal diffusivity measurement”, Infrared Phys. Techn. 53(3), 193–196 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  17. A. Matvienko, and A. Mandelis, “Quantitative one-dimensional thermal-wave cavity measurements of fluid thermophysical properties through equivalence studies with three- dimensional geometries”, Rev. Sci. Instum. 77, 1–9 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  18. J. Philip, and M. R. Nisha, “Thermal diffusion in dilute nanofluids investigated by photothermal interferometry”, J. Phys.: Conf. Ser. 214, 012035 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  19. K. C. Song, M. S. Lee, T. S. Park, and B. S. Lee, “Preparation of colloidal silver nanoparticles by chemical reduction method”, Korean J. Chem. Eng. 26, 153–155 (2009). [CrossRef] [Google Scholar]
  20. I. Dekany, and R. Patakfalvi, “Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes”, Appl. Clay Sci. 25, 149–159 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  21. M. D. Fan, P. Yuan, T. H. Chen, H. P. He, and A. H. Yuan, “Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite”, Chin. Sci. Bull. 55(11), 1092–1099 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  22. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha, “Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment”, Nanoscience and Nanotechnology Letters 4, 30–34 (2012). [Google Scholar]
  23. J. A. Balderas-Lopez, “Thermal effusivity measurements for liquids: A self-consistent photoacoustic methodology”, Rev. Sci. Instrum. 78, 064901–064904 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  24. B. Z. Azmi, L. T. Sing, E. B. Saion, and Z. A. Wahab, “Thermal wave interferometry of gas-liquid using optical fibre thermal wave resonator cavity technique”, J. Sci. Technol. 14, 33–40 (2006). [Google Scholar]
  25. G. Pan, and A. Mandelis, “Measurements of the thermodynamic equation of state via the pressure dependence of thermophysical properties of air by a thermal-wave resonant cavity”, Rev. Sci. Instrum. 69, 2918–2923 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  26. G. A. López-Muñoz, and J. A. Balderas-López, “Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes”, Nanoscale Res. Lett. 7(1), 667 (2012). [Google Scholar]
  27. C. H. Chon, and K. D. Kihm, “Thermal conductivity enhancement of nanofluids by Brownian motion”, J. Heat Transf. 127, 810 (2005). [CrossRef] [Google Scholar]
  28. R. Prasher, P. E. Phelan, and P. Bhattacharya, “Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)”, Nano Lett. 6(7), 1529–1534 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.