Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14031 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2014.14031 | |
Published online | 11 August 2014 |
- W. T. Estler, “High-accuracy displacement interferometry in air,” Appl. Opt. 24, 808–815 (1985). [NASA ADS] [CrossRef] [Google Scholar]
- K. B. Earnshaw, and E. N. Hernandez, “Two-laser optical distance-measuring instrument that corrects for the atmospheric index of refraction,” Appl. Opt. 11, 749–754 (1972). [NASA ADS] [CrossRef] [Google Scholar]
- B. Querzola, “High accuracy distance measurement by two-wavelength pulsed laser sources,” Appl. Opt. 18, 3035–3047 (1979). [NASA ADS] [CrossRef] [Google Scholar]
- K. Miyake, “Optical pulsed ranging: effect of atmospheric scintillation on measurement accuracy,” Opt. Quant. Electron. 13, 1–10 (1981). [CrossRef] [Google Scholar]
- A. Ishida, “Two-wavelength displacement-measuring interferometer using second-harmonic light to eliminate air-turbulence-induced errors,” Jpn. J. Appl. Phys. 28, L473 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- H. Matsumoto, and T. Honda, “High-accuracy length-measuring interferometer using the two-colour method of compensating for the refractive index of air,” Meas. Sci. Technol. 3, 1084 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- H. Matsumoto, Y. Zhu, S. Iwasaki, and T. Oishi, “Measurement of the changes in air refractive index and distance by means of a two-color interferometer,” Appl. Opt. 31, 4522–4526 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- M. Takeichi, Y. Warashina, A. Takeshima, I. Ogawa, K. Ichie, and Y. Mizushima, “Streak-camera-based long-distance range finder with 10(-7) resolution,” Appl. Opt. 33, 2502–2510 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- L. Zeng, K. Seta, H. Matsumoto, and S. Iwashaki, “Length measurement by a two-colour interferometer using two close wavelengths to reduce errors caused by air turbulence,” Meas. Sci. Technol. 10, 587 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- K. Minoshima, and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- L. Zeng, S. Hatano, Y. Lee, H. Matsumoto, K. Seta, and S. Iwasaki, “Reducing the quantization error and miscount error in two-color interferometers by combining a coefficient compensation technique with a fringe-count averaging technique,” Opt. Commun. 176, 65–70 (2000). [CrossRef] [Google Scholar]
- L. Zeng, I. Fujima, A. Hirai, H. Matsumoto, and S. Iwasaki, “A two-color heterodyne interferometer for measuring the refractive index of air using an optical diffraction grating,” Opt. Commun. 203, 243–247 (2002). [CrossRef] [Google Scholar]
- K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19, 26095–26105 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24, 015203 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3, 1894 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Yamaoka, K. Minoshima, and H. Matsumoto, “Direct measurement of the group refractive index of air with interferometry between adjacent femtosecond pulses,” Appl. Opt. 41, 4318–4324 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34, 1982–1984 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17, 9300–9313 (2009). [CrossRef] [Google Scholar]
- J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photon. 4, 716–720 (2010). [Google Scholar]
- G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength inter-ferometry of optical frequency combs for distance measurement,” Opt. Lett. 38, 2140–2143 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, and M. Aketagawa, “Characteristics of an adjacent pulse repetition interval length as a scale for length,” Opt. Eng. 53, 051502 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, K. Takamasu, and H. Matsumoto, “Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem: theoretical analysis,” J. Europ. Opt. Soc. Rap. Public. 8, 13016 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, K. Takamasu, and H. Matsumoto, “A study of the possibility of using an adjacent pulse repetition interval length as a scale using a HeliumâĂŞNeon interferometer,” Precis. Eng. 37, 694–698 (2013). [Google Scholar]
- D. Wei, and M. Aketagawa, “Comparison of length measurements provided by a femtosecond optical frequency comb,” Opt. Express 22, 7040–7045 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- P. L. Bender, and J. C. Owens, “Correction of optical distance measurements for the fluctuating atmospheric index of refraction,” J. Geophys. Res. 70, 2461–2462 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- A. N. Golubev, and A. M. Chekhovsky, “Three-color optical range finding,” Appl. Opt. 33, 7511–7517 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- K. Meiners-Hagen, and A. Abou-Zeid, “Refractive index determination in length measurement by two-colour interferometry,” Meas. Sci. Technol. 19, 084004 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. Ye, and S. T. Cundiff, Femtosecond optical frequency comb: principle, operation and applications (Springer, New York, 2005). [CrossRef] [Google Scholar]
- B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics (Wiley-Interscience, Hoboken, 2007). [Google Scholar]
- E. Bengt, “The refractive index of air,” Metrologia 2, 71–79 (1966). [CrossRef] [Google Scholar]
- K. P. Birch, and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- J. A. Stone, and J. H. Zimmerman, “Refractive index of air calculator,” http://emtoolbox.nist.gov/Wavelength/Edlen.asp [Google Scholar]
- D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19, 4881–4889 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- A. N. Golubev, and A. M. Chekhovsky, “Three-color optical range finding,” Appl. Opt. 33, 7511–7517 (1994). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.