Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14017 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2014.14017 | |
Published online | 11 May 2014 |
- P. Kowalczuk, M. Zabłocka, S. Sagan, and K. Kuliński, “Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea,” Oceanologia 52, 431–471 (2010). [CrossRef] [Google Scholar]
- S. Woźniak, J. Meler, B. Lednicka, A. Zdun, and J. Stoń-Egiert, “Inherent optical properties of suspended particulate matter in the southern Baltic Sea,” Oceanologia 53, 691–729 (2011). [CrossRef] [Google Scholar]
- T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°,” Appl. Optics 29, 4658–4665 (1990). [CrossRef] [Google Scholar]
- R. A. Maffione, D. R. Dana, and R. C. Honey, “Instrument for underwater measurement of optical backscatter,” in Proc. SPIE 1537, 173–184 (1991). [CrossRef] [Google Scholar]
- R. A. Maffione, and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Optics 36, 6057–6067 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- E. Boss, and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Optics 40, 5503–5507 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- W. Freda, “Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea,” Oceanologia 54, 355–367 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21, 18697–18711 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems (Cambridge University Press, Cambridge, 2011). [Google Scholar]
- J. Watson, and O. Zielinski, Subsea optics and imaging (Woodhead Publishing, Cambridge, 2013). [CrossRef] [Google Scholar]
- W. Freda, T. Król, O. V. Martynov, E. B. Shybanov, and R. Hapter, “Measurements of scattering function of sea water in Southern Baltic,” Eur. Phys. J. Spec. Top. 144, 147–154 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. E. Lee, and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Tech. 20, 563–571 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- V. I. Haltrin, and V. L. Mankovsky, “Analytical representation of experimental light scattering phase functions measured in seas, oceans and Lake Baykal,” in Proceedings to IEEE International Geoscience and Remote Sensing Symposium, 2651–2653 (IEEE, Toronto, 2002) [CrossRef] [Google Scholar]
- M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Optics 45, 3605–3619 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- W. Freda, and J. Piskozub, “Improved method of Fournier-Forand marine phase function parameterization,” Opt. Express 15, 12763–12768 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- W. Freda, and J. Piskozub, “Revisiting the role of oceanic phase function in remote sensing reflectance,” Oceanologia 54, 29–38 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Otremba, “The impact on the reflectance in VIS of a type of crude oil film floating on the water surface,” Opt. Express 7, 129–134 (2000). [CrossRef] [Google Scholar]
- Z. Otremba, “Oil droplets as light absorbents in seawater,” Opt. Express 15, 8592–8597 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- K. Rudź, M. Darecki, and H. Toczek, “Modelling the influence of oil content on optical properties of seawater in the Baltic Sea,” J. Europ. Opt. Soc. Rap. Public. 8, 13063 (2013). [CrossRef] [Google Scholar]
- V. Drozdowska, W. Freda, E. Baszanowska, K. Rudź, M. Darecki, J. R. Heldt, and H. Toczek, “Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modelling,” Eur. Phys. J. Spec. Top. 222, 2157–2170 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Otremba, O. Zielinski, and C. Hu, “Optical contrast of oil dispersed in seawater under windy conditions,” J. Europ. Opt. Soc. Rap. Public. 8, 13051 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- Z. A. Otremba, “Modeling of the light transfer in a water column polluted with oil suspension,” J. Europ. Opt. Soc. Rap. Public. 8, 13067 (2013). [CrossRef] [Google Scholar]
- C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York, 1983). [Google Scholar]
- Z. Otremba, and J. Piskozub, “Phase functions of oil-in-water emulsions,” Opt. Appl. 34, 93–99 (2004). [Google Scholar]
- M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University Press, Cambridge, 2002). [Google Scholar]
- P. Yang, K. N. Liou, M. I. Mishchenko, and B.-C. Gao, “Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols,” Appl. Optics 39, 3727–3737 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- J. Piskozub, and D. McKee, “Effective scattering phase functions for the multiple scattering regime,” Opt. Express 19, 4786–4794 (2011). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.