Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14018 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2014.14018 | |
Published online | 18 May 2014 |
- M. Bravo, A. Candiani, A. Cucinotta, S. Selleri, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Remote PCF-based sensors multiplexing by using optical add–drop multiplexers,” Opt. Laser Technol. 57, 9–11 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- K. S. C. Kuang, S. T. Quek, and M. Maalej, “Remote flood monitoring system based on plastic optical fibres and wireless motes,” Sensor. Actuat. A-Phys. 147(2), 449–455 (2008). [CrossRef] [Google Scholar]
- M. Niggemann, A. Katerkamp, M. Pellmann, P. Bolsmann, J. Reinbold, and K. Cammann, “ Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy,” Sensor. Actuat. B-Chem. 34(1–3), 328–333 (1996). [CrossRef] [Google Scholar]
- A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol. 12(1), 87–100 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. M. Bello, V. A. Narayanan, D. L. Stokes, and V. D. Tuan, “Fiberoptic remote sensor for in situ surface-enhanced Raman scattering analysis,” Anal. Chem. 62(22), 2437–2441 (1990). [CrossRef] [Google Scholar]
- Y. Zhao, and C. Zhou, “Fast characterization of low-reflectance Bragg gratings in a polarization maintaining fiber using a reference grating,” Opt. Fiber Technol. 17(3), 242–246 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- G. Breglio, A. Irace, A. Cusano, and A. Cutolo, “Chirped-pulsed frequency modulation (C-PFM) for fiber Bragg grating sensors multiplexing,” Opt. Fiber Technol. 12(1), 71–86 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- B. Jiang, J. Zhao, C. Qin, Z. Huang, and F. Fan, “An optimized strain demodulation method based on dynamic double matched fiber Bragg grating filtering,” Opt. Laser. Eng. 49(3), 415–418 (2011). [CrossRef] [Google Scholar]
- R. Ruzek, P. Kudrna, M. Kadlec, V. Karachalios, and K. I. Tserpes, “Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part II: Mechanical testing and validation,” Compos. Struct. 107, 737–744 (2014). [CrossRef] [Google Scholar]
- H. Peng, Y. Su, Z. Ye, and B. Zhou, “A novel fiber Bragg grating sensor for weak pressure measurement based on the Stokes parameter,” Opt. Fiber Technol. 18(6), 485–489 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- I. de Lourenço, G. R. C. Possetti, M. Muller, and J. L. Fabris, “Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints,” Sensors 10, 4761–76 (2010). [CrossRef] [Google Scholar]
- P. A. S. Jorge, S. O. Silva, C. Gouveia, P. Tafulo, L. Coelho, P. Caldas, D. Viegas, et al., “Fiber optic-based refractive index sensing at INESC Porto,” Sensors 12(6), 8371–8389 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sensor. Actuat. B-Chem. 174, 253–257 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- F. B. Xiong and D. Sisler, “Determination of low-level water content in ethanol by fiber-optic evanescent absorption sensor,” Opt. Commun. 283(7), 1326–1330 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013). [CrossRef] [Google Scholar]
- J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. B-Chem. 190, 657–663 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. Kumar, D. Engles, S. Prashar and A. Singh, “Etched FBG as chemical sensor for fuel adultration,” IJERT 1(4), 1–5 (2012). [Google Scholar]
- G. Laffont, and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- G. Nemova, and R. Kashyap, “Modeling of Plasmon-Polariton Refractive-Index Hollow Core Fiber Sensors Assisted by a Fiber Bragg Grating,” J. Lightwave Technol. 24(10), 3789–3796 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- N. Díaz-herrera, D. Viegas, P. A. S. Jorge, F. M. Araújo, J. Santos, M. Navarrete, and A. González-cano, “Chemical Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement,” Sensor. Actuat. B-Chem. 144, 226–231 (2010). [CrossRef] [Google Scholar]
- Y. Y. Shevchenko, and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings.,” Opt. Lett. 32(3), 211–213 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- S. Capouilliet, J. A. Smith, D. J. Walter, G. S. Glaesemann, G. E. Kohnke, and R. D. Irion, “A Fiber Bragg Grating Measurement System for Monitoring Optical Fiber Strain,” (2011), http://www.corning.com/docs/opticalfiber/tr3680.pdf. [Google Scholar]
- F. B. Xiong, W. Z. Zhu, H. F. Lin, and X. G. Meng, “Fiber-optic sensor based on evanescent wave absorbance around 2.7 µm for determining water content in polar organic solvents,” Appl. Phys. B 115, 129–135 (2013). [Google Scholar]
- R. M. Pope, and E. S. Fry, “Pure water II Integrating cavity measurements,” Appl. Optics 36(33), 8710–8723 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sensor. Actuat. B-Chem. 132(1), 26–33 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- P. Zumbo, “Ethanol Precipitation,” Pauling 1932, 1–12 (1932). [Google Scholar]
- B. D. Gupta, and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” Journal of Sensors 2009, 1–12 (2009). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.