Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14005
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2014.14005
Published online 25 January 2014
  1. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, et al., “Silicon photonic resonator sensors and devices,” Proc. of SPIE, 8236, 823620 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  2. V. M. N. Passaro, B. Troia, M. La Notte, and F. De Leonardis, “Photonic resonant microcavities for chemical and biochemical sensing,” RSC Adv. 3, 25–44 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  3. N. A. Yebo, S. P. Sree, E. Levrau, C. Detavernier, Z. Hens, J. A. Martens, and R. Baets, “Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator,” Opt. Express 20, 11855–11862 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  4. J. Hodgkinson, and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 1–59 (2013). [Google Scholar]
  5. M. Piliarik, H. Sipova, P. Kvasnicka, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Lee, and P. M. Fauchet, “Two-dimension silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  7. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, et al., “Silicon microring resonators,” Laser & Photon. Rev. 6, 47–73 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  8. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  9. R. Boeck, J. Flueckiger, L. Chrostowski, and N. A. F. Jaeger, “Experimental performance of DWDM quadruple Vernier racetrack resonators,” Opt. Express 21, 9103–9112 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  10. L. Jin, M. Li and J-J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascade micro-ring resonators with Vernier effect,” Opt. Commun. 284, 156–159 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. T. Claes, W. Bogaerts and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonator based on the Vernier-effect and introducing of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  12. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17, 23817–23822 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  13. J. Hu, and D. Dai, “Cascaded-Ring Optical Sensor With Enhanced Sensitivity by Using Suspended Si-Nanowires,” IEEE Photon. Technol. Lett. 23, 842–844 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  14. X. Jiang, J. Ye, J. Zou, M. Li, and J.-J. He, “Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Letters 38, 1349–1351 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  15. V. M. N. Passaro, B. Troia, and F. De Leonardis, “A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR,” Sens. Actuators B: Chemical 168, 402–420 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  16. B. Troia, and V. M. N. Passaro, “Photonic sensor based on the Vernier effect operating at 3.8 µm,” in Proceedings of the 5th EOS Topical Meeting on Optical Microsystems (OµS’13), (EOS, Capri, 2013). [Google Scholar]
  17. G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112–7119 (2011). [CrossRef] [Google Scholar]
  18. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler Penades, S. Stankovic, H. M. H. Chong, et al., “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mat. Express 3, 1205–1214 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  19. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, et al., “Demonstration of Silicon-on-Insulator mid-infrared spectrometer operating at 3.8µm,” Opt. Express 21, 11659–11669 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  20. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, et al., “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mat. Express 3, 1523–1536 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  21. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8, 840–848 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  22. Comsol Multiphysics by COMSOL©, ver. 3.2, single license (2005). [Google Scholar]
  23. F. Dell’Olio, and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguide,” Opt. Express 15, 4977–4993 (2007). [CrossRef] [Google Scholar]
  24. V. M. N. Passaro, and M. La Notte, “Optimizing SOI Slot Waveguide Fabrication Tolerances and Strip-Slot Coupling for Very Efficient Optical Sensing,” Sensors 12, 2436–2455 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  25. OptiFDTD, Version 7.1 & OptiBPM, Version 9.0; Optiwave Systems Inc.: Nepan, ON, Canada, 2007. [Google Scholar]
  26. V. M. N. Passaro, F. Dell’Olio, B. Timotijevic, G. Z. Mashanovich, and G. T. Reed, “Polarization-Insensitive Directional Couplers Based on SOI Wire Waveguides,” The Open Optics Journal 2, 6–9 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.