Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14006 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2014.14006 | |
Published online | 25 January 2014 |
- X. Guo, “Surface plasmon resonance based biosensor technique: A review,” J. Biophotonics 5, 483 (2012). [CrossRef] [Google Scholar]
- E. M. Larsson, J. Alegret, and D. S. Sutherland, “Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors” Nano Lett. 7, 1256 (2007). [Google Scholar]
- P.-Y. Chung, T.-H. Lin, G. Schultz, C. Batich, and P. Jiang, “Nanopyramid surface plasmon resonance sensors” Appl. Phys. Lett. 96, 261108 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, et al., “Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood,” Nat. Commun. 2, 538 (2011). [CrossRef] [Google Scholar]
- X. Yin, and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. Slavìk, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensor Actuat. B 123, 10 (2007). [CrossRef] [Google Scholar]
- M. Nirschl, F. Reuter, and J. Vörös, “Review of Transducer Principles for Label-Free Biomolecular Interaction Analysis,” Biosensors 1, 70 (2011). [CrossRef] [Google Scholar]
- J. Kneipp, H. Kneipp, and K. Kneipp, “SERS- a single-molecule and nanoscale tool for bioanalytics,” Chem. Rev. Soc. 37, 1052 (2008). [CrossRef] [Google Scholar]
- J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates,” Nano Lett. 6, 2225 (2006). [Google Scholar]
- G. Rusciano, A. C. De Luca, G. Pesce, A. Sasso, G. Oliviero, J. Amato, N. Borbone, et al., “Label-Free Probing of G-Quadruplex Formation by Surface-Enhanced Raman Scattering,” Anal. Chem. 83, 6849 (2011). [CrossRef] [Google Scholar]
- G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso “On the interaction of nano-sized organic carbon particles with model lipid membranes,” Carbon 47, 2950 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8, 347 (1993). [CrossRef] [Google Scholar]
- E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007). [CrossRef] [Google Scholar]
- M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349 (2011). [Google Scholar]
- K. Ishizaki, and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367 (2009). [Google Scholar]
- E. De Tommasi, A. C. De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113, (2013). [NASA ADS] [CrossRef] [Google Scholar]
- V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, 16255 (1999). [Google Scholar]
- V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. Rue, “Resonant Coupling of Near-Infrared Radiation to Photonic Band Structure Waveguides,” J. Lightwave Technol. 17, 2050 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- S. Fan, and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 2351121, (2002) [Google Scholar]
- S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” JOSA A 20, 569 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, et al., “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nat. Photonics 5, 239 (2011). [CrossRef] [Google Scholar]
- C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Cerenkov Radiation in Photonic Crystals,” Science 299, 368 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [Google Scholar]
- D. Lu, and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012). [CrossRef] [Google Scholar]
- P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl. 1, e42 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, et al., “Self-Collimation of Light over Millimeter-Scale Distance in a Quasi-Zero-Average-Index Metamaterial,” Phys. Rev. Lett. 102, 133902 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- G. Di Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett. 37, 1142 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “Influence of surface termination on negative reflection by photonic crystals,” Opt. Express 15, 6605 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. Notomi, “Negative refraction in photonic crystals,” Opt. Quant. Electron. 34, 133 (2002). [CrossRef] [Google Scholar]
- V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express 18, 25068 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- K. Vynck, D. Felbacq, E. Centeno, A. I. Cabuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102, 133901 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- M. Rybin, A. Khanikaev, M. Inoue, K. Samusev, M. Steel, G. Yushin, and M. Limonov, “Fano Resonance between Mie and Bragg Scattering in Photonic Crystals,” Phys. Rev. Lett. 103, 023901 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am. 31, 213 (1941). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.