Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13061 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2971/jeos.2013.13061 | |
Published online | 03 September 2013 |
- F. Wu, Y. Yang, and P. J. Dougherty, “Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system,” Clin. Exp. Optom. 92, 320–327 (2009). [CrossRef] [Google Scholar]
- S. C. Schallhorn, and J. A. Venter, “One-month outcomes of wavefront-guided LASIK for low to moderate myopia with the VISX STAR S4 laser in 32,569 eyes,” J. Refract. Surg. 25, S634–S641 (2009). [CrossRef] [Google Scholar]
- C. X. Du, Y. Shen, and Y. Wang, “Comparison of high order aberration after conventional and customized ablation in myopic LASIK in different eyes of the same patient,” J. Zhejiang. Univ. Sci. B 8, 177–180 (2007). [CrossRef] [Google Scholar]
- S. C. Schallhorn, D. J. Tanzer, S. E. Kaupp, M. Brown and S. E. Malady, “Comparison of night driving performance after wavefront-guided and conventional LASIK for moderate myopia,” Ophthalmology 116, 702–709 (2009). [CrossRef] [Google Scholar]
- S. T. Awwad, K. K. Haithcock, D. Oral, R. W. Bowman, H. D Cavanagh and J. P McCulley, “A comparison of induced astigmatism in conventional and wavefront-guided myopic LASIK using LADARVision4000 and VISX S4 platforms,” J. Refract. Surg. 21, S792–S798 (2005). [CrossRef] [Google Scholar]
- J. Zhang, Y. H. Zhou, N. L. Wang, and R. Li, “Comparison of visual performance between conventional LASIK and wavefront-guided LASIK with iris-registration,” Chin Med J (Engl) 121, 137–142 (2008). [CrossRef] [Google Scholar]
- L. Racine, L. Wang, and D. D. Koch, “Size of corneal topographic effective optical zone: comparison of standard and customized myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 142, 227–232 (2006). [CrossRef] [Google Scholar]
- L. Wang, and D. D. Koch, “Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation,” J. Cataract. Refract. Surg. 34, 2057–2062 (2008). [CrossRef] [Google Scholar]
- P. Padmanabhan, M. Mrochen, D. Viswanathan, and S. Basuthkar, “Wavefront aberrations in eyes with decentered ablations,” J. Cataract Refract. Surg. 35, 695–702 (2009). [CrossRef] [Google Scholar]
- S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999). [CrossRef] [Google Scholar]
- M. S. Macsai, K. Stubbe, A. P. Beck, and Z. B. Ravage, “Effect of expanding the treatment zone of the Nidek EC-5000 laser on laser in situ keratomileusis outcomes,” J. Cataract Refract. Surg. 30, 2336–2343 (2004). [CrossRef] [Google Scholar]
- M. A. el Danasoury, “Prospective bilateral study of night glare after laser in situ keratomileusis with single zone and transition zone ablation,” J. Refract. Surg. 14, 512–516 (1998). [CrossRef] [Google Scholar]
- M. C. Arbelaez, C. Vidal, B. A. Jabri, and S. Arba Mosquera, “LASIK for myopia with Aspheric ‘aberration neutral’ ablations using the ESIRIS laser system,” J. Refract. Surg. 25, 991–999 (2009). [CrossRef] [Google Scholar]
- R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 578–587 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. Bühren, G. Yoon, S. MacRae, and K. Huxlin, “Contribution of optical zone decentration and pupil dilation on the change of optical quality after myopic photorefractive keratectomy in a cat model,” J. Refract. Surg. 26, 183–190 (2010). [CrossRef] [Google Scholar]
- J. Bühren, C. Kuhne, and T. Kohnen, “Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK,” J. Cataract Refract. Surg. 31, 2272–2280 (2005). [CrossRef] [Google Scholar]
- J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 1949–1957 (1994). [CrossRef] [Google Scholar]
- L. Fang, X. He, and F. Chen, “Theoretical analysis of wavefront aberration from treatment decentration with oblique incidence after conventional laser refractive surgery,” Opt. Express 18, 22418–22431 (2010). [CrossRef] [Google Scholar]
- Y. Zhang, W. Liao, and J. Shen, “Blend zone model for excimer laser refractive surgery,” Opt. Precision Eng. 12, 406–410 (2004). [Google Scholar]
- L. Fang, Y. Wang, and F. Chen, “Influence of Stiles-Crawford effect on visual performance after laser in situ keratomileusis,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29, 1482–1488 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4, 329–351 (2004). [CrossRef] [Google Scholar]
- J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4, 322–328 (2004). [CrossRef] [Google Scholar]
- L. Wu, X. Zhou, R. Chu, and Q. Wang, “Photoablation centration on the corneal optical center in myopic LASIK using AOV excimer laser,” Eur. J. Ophthalmol. 19, 923–929 (2009). [CrossRef] [Google Scholar]
- S. B. Lee, B. S. Hwang, and J. Lee, “Effects of decentration of photorefractive keratectomy on the induction of higher order wave-front aberrations,” J. Refract. Surg. 26, 731–743 (2010). [CrossRef] [Google Scholar]
- J. Bühren, G. Yoon, S. Kenner, S. MacRae, and K. Huxlin, “The effect of optical zone decentration on lower- and higher-order aberrations after photorefractive keratectomy in a cat model,” Invest. Ophthalmol. Vis. Sci. 48, 5806–5814 (2007). [CrossRef] [Google Scholar]
- J. Porter, G. Yoon, D. Lozano, J. Wolfing, R. Tumbar, S. MacRae, I. G. Cox, and D. R. Williams, “Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations,” J. Cataract Refract. Surg. 32, 21–32 (2006). [CrossRef] [Google Scholar]
- J. L. Febbraro, D. D. Koch, H. N. Khan, A. Saad, and D. Gatinel, “Detection of static cyclotorsion and compensation for dynamic cyclotorsion in laser in situ keratomileusis,” J. Cataract Refract. Surg. 36, 1718–1723 (2010). [CrossRef] [Google Scholar]
- G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005). [CrossRef] [Google Scholar]
- V. F. Canales, and M. P. Cagigal, “Monte Carlo simulation of irradiance distribution on the retina after refractive surgery,” J. Refract. Surg. 20, 384–390 (2004). [CrossRef] [Google Scholar]
- A. B. Watson, and A. J. Ahumada, Jr., “Predicting visual acuity from wavefront aberrations,” J. Vis. 8, 17, 1–19 (2008). [CrossRef] [Google Scholar]
- P. S. Binder, and J. Rosenshein, “Retrospective comparison of 3 laser platforms to correct myopic spheres and spherocylinders using conventional and wavefront-guided treatments,” J. Cataract Refract. Surg. 33, 1158–1176 (2007). [CrossRef] [Google Scholar]
- G. M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 539–543 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate and H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. 119, 1159–1164 (2001). [CrossRef] [Google Scholar]
- M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001). [CrossRef] [Google Scholar]
- Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chin. Med. J. (Engl) 120, 269–273 (2007). [CrossRef] [Google Scholar]
- P. Vinciguerra, M. Azzolini, P. Airaghi, P. Radice, and V. de Molfetta, “Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes,” J. Refract Surg. 14, S199–S203 (1998). [Google Scholar]
- P. Vinciguerra, F. I. Camesasca, and I. M. Torres, “Transition zone design and smoothing in custom laser-assisted subepithelial keratectomy,” J. Cataract Refract. Surg. 31, 39–47 (2005). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.