Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13060 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2013.13060 | |
Published online | 03 September 2013 |
- R. Santer, and C. Schmechtig, “Adjacency effects on water surfaces: primary scattering approximation and sensitivity study,” Appl. Optics 39, 361–375 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- M. Wang, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products (IOCCG Report 10, 2010). [Google Scholar]
- S. Sathyendranath, Remote sensing of ocean colour in coastal, and other optically-complex waters (IOCCG Report 3, 2000). [Google Scholar]
- S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539–555 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1733 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- C. M. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method,” Remote Sens. Environ. 74, 195–206 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Optics 39, 897–912 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Optics 41, 5755–5772 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Optics 41, 2705–2714 (2002). [CrossRef] [Google Scholar]
- J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.-Oceans 103, 24937–24953 (1998). [CrossRef] [Google Scholar]
- T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Optics 45, 8116–8131 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- S. Bélanger, J. K. Ehn, and M. Babin, “Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data,” Remote Sens. Environ. 111, 51–68 (2007). [CrossRef] [Google Scholar]
- S. Sterckx, E. Knaeps, and K. Ruddick, “Detection and correction of adjacency effects in hyperspectral airborne data of coastal and inland waters: the use of the near infrared similarity spectrum,” Int. J. Remote Sens. 32, 6479–6505 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- B. Bulgarelli, V. Kisselev, and G. Zibordi. Oceans from space. 2010. Venice, Italy: Joint Research Centre, EC. [Google Scholar]
- G. Zibordi, S. B. Hooker, J. F. Berthon, D. D’Alimonte, “Autonomous above-water radiance measurements from an offshore platform: a field assessment experiment,” J. Atmos. Ocean. Tech. 19, 808–819 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- K. Ruddick, V. de Cauwer, and Y.-J. Park, “Web Appendix 2: Measurement uncertainty analysis,” Limnol. Oceanogr. 51, 1167–1179 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- K. Ruddick, V. de Cauwer, and Y.-J. Park, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51, 1167–1179 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- S. G. H. Simis and J. Olsson, “Unattended processing of shipborne hyperspectral reflectance measurements,” Remote Sens. Environ. 135, 202–212 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- V. Martinez-Vicente, P. E. Land, G. H. Tilstone, C. Widdicombe, and J. R. Fishwick, “Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel,” J. Plankton Res. 32, 603–619 (2010). [CrossRef] [Google Scholar]
- S. B. Groom, V. Martinez-Vicente, J. R. Fishwick, G. Tilstone, G. Moore, T. J. Smyth, and D. Harbour, “The western English Channel observatory: Optical characteristics of station L4,” J. Marine Syst. 15, 20–50 (2009). [Google Scholar]
- C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Optics 38, 7442–7455 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- K. Ruddick, V. de Cauwer, and Y.-J. Park, “Web Appendix 1. Data processing: scan selection and averaging,” Limnol. Oceanogr. 51, 1167–1179 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Olsson and S. G. H. Simis. RFlex: Spectroradiometer control for shipborne reflectance measurements. 2012; Available from: http://sourceforge.net/projects/rflex/. [Google Scholar]
- S. P. Garaba and O. Zielinski, “Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland,” Opt. Express 21, 15938–15950 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ. 133, 85–89 (2013). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.