Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13059
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2013.13059
Published online 29 August 2013
  1. A. A. Aboketaf, L. Cao, D. Adams, A. W. Elshaari, S. F. Preble, M. T. Crowley, L. F. Lester, and P. Ampadu, “Hybrid OTDM and WDM for multicore optical communication,” in Proceedings of 2012 International Green Computing Conference (IGCC), 1–5 (IEEE, San Jose, 2012). [Google Scholar]
  2. Gousia, G. M. Rather, and A. K. Sharma, “WDM-OTDM based spectral efficient hybrid multiplexing technique inherent with properties of bandwidth elasticity and scalability,” Optik 121, 1036–1041 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  3. P. J. Delfyett, B. Mathason, I. Nitta, and H. Shi, “Novel multiwave-length mode-locked semiconductor lasers: physics and applications,” Int. J. Hi. Spe. Ele. Syst. 10, 309–317 (2000). [CrossRef] [Google Scholar]
  4. N. J. Doran, and D. Wood, “Nonlinear optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  5. H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, “Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit/s time-division multiplexing signal de-multiplexing,” Opt. Lett. 27, 1555–1557 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  6. J. H. Lee, T. Tanemura, Y. Takushima, and K. Kikuchi, “All-optical 80-Gb/s add-drop multiplexer using fiber-based Nonlinear Optical Loop Mirror,” IEEE Photon. Technol. Lett. 17, 840–842 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  7. T. Sakamoto and K. Kikuchi, “160-Gb/s operation of Nonlinear Optical Loop-Mirror with an optical bias controller,” IEEE Photon. Technol. Lett. 17, 1058–1060 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  8. P. Vorreau, F. Parmigiani, M. Ibsen, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “TDM-to-WDM conversion based on NOLM from 128.1 Gbit/s to 3x42.7 Gbit/s,” in Proceedings of 2008 ITG Symposium on Photonic Networks, 1–3 (IEEE, Leipzig, 2008). [Google Scholar]
  9. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror,” IEEE J. Quantum Electron. 35, 867–874 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  10. M. Attygalle, A. Nirmalathas, and H. F. Liu, “Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser,” IEEE Photon. Technol. Lett. 14, 543–545 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. Meissner, M. Rösch, B. Schmauss, and G. Leuchs, “12 dB of noise reduction by a NOLM-based 2-R regenerator,” IEEE Photon. Technol. Lett. 15, 1297–1299 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  12. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Topics Quantum Electron. 10, 192–196 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14, 299–316 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  14. K. Cvecek, G. Onishchukov, K. Sponsel, A. G. Striegler, B. Schmauss, and G. Leuchs, “Experimental investigation of a modified NOLM for phase-encoded signal regeneration,” IEEE Photon. Technol. Lett. 18, 1801–1803 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  15. T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, “40-Gb/sx4-channel all-optical multichannel limiter utilising spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 15, 763–765 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Vasilyev, and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  17. Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, “All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s,” IEEE Photon. Technol. Lett. 20, 1854–1856 (2008). [CrossRef] [Google Scholar]
  18. L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of simultaneous 2R regeneration of two 40-Gb/s channels in a single optical fiber,” IEEE Photon. Technol. Lett. 20, 270–272 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  19. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15, 752–754 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  20. T. I. Lakoba, J. R. Williams, and M. Vasilyev, “NALM-based, phase-preserving 2R regenerator of high-duty-cycle pulses,” Opt. Express 19, 23017–23028 (2011). [CrossRef] [Google Scholar]
  21. B. Bakhshi, M. Vaa, E. A. Golovchenko, H. Li, and G. T. Harvey, “Impact of gain-flattening-filter ripple in long-haul WDM systems,” in Proceedings of 27th Eur. Conf. On Opt. Comm. (ECOC’01), 448–449 (IEEE, Amsterdam, 2001). [CrossRef] [Google Scholar]
  22. D. A. Pattison, P. N. Kean, W. Forysiak, I. Bennion, and N. J. Doran, “Bandpass switching in a nonlinear-optical loop mirror,” Opt. Lett. 20, 362–364 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  23. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001). [CrossRef] [Google Scholar]
  24. T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24, 4108–4119 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  25. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, “High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast,” IEEE Photon. Technol. Lett. 17, 154–156 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  26. O. Pottiez, R. Grajales-Coutiño, B. Ibarra Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50, E24–E31 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  27. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Mendez-Martinez, “Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias,” Opt. Commun. 254, 152–167 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  28. R. Ulrich, and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  29. O. Pottiez, B. Ibarra Escamilla, and E. A. Kuzin, “Large amplitude noise reduction in ultrashort pulse trains using a power-symmetric Nonlinear Optical Loop Mirror,” Opt. & Laser Technol. 41, 384–391 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001). [Google Scholar]
  31. N. Korneev, E. A. Kuzin, B. A. Villagomez-Bernabe, O. Pottiez, B. Ibarra-Escamilla, A. González-García, and M. Durán-Sánchez, “Raman-induced polarization stabilization of vector solitons in circularly birefringent fibers,” Opt. Express 20, 24288–24294 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  32. I. Mandelbaum, M. Bolshtyansky, T. F. Heinz, and A. R. H. Walker, “Method for measuring the Raman gain tensor in optical fibers,” J. Opt. Soc. Am. B 23, 621–627 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  33. A. Bogoni, M. Scaffardi, P. Ghelfi, and L. Potì, “Nonlinear Optical Loop Mirrors: Investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Topics Quantum Electron. 10, 1115–1123 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  34. F. Zhang, and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32, 2213–2218 (1993). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.