Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13044
Number of page(s) 29
DOI https://doi.org/10.2971/jeos.2013.13044
Published online 10 July 2013
  1. F. Zernike, “Diffraction theory of the knife-edge test and its improved version, the phase-contrast method,” Physica 1, 689–704 (1934). [NASA ADS] [CrossRef] [Google Scholar]
  2. B. R. A. Nijboer, The Diffraction Theory of Aberrations (Ph.D. thesis, University of Groningen, The Netherlands, 1942). [Google Scholar]
  3. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, United Kingdom, 1999). [CrossRef] [Google Scholar]
  4. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  5. J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  6. P. Dirksen, J. J. M. Braat, P. De Bisschop, A. J. E. M. Janssen, C. A. H. Juffermans, and A. Williams, “Characterization of a projection lens using the extended Nijboer-Zernike approach,” Proc. SPIE 4691, 1392–1399 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  7. P. Dirksen, J. J. M. Braat, A. J. E. M. Janssen, and C. Juffermans, “Aberration retrieval using the extended Nijboer-Zernike approach,” J. Microlithogr. Microfabr. Microsyst. 2, 61–68 (2003). [Google Scholar]
  8. C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer-Zernike approach,” J. Mod. Opt. 52, 1695–1728 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  9. A. A. Ramos, and A. L. Ariste, “Image reconstruction with analytical point spread functions,” Astron. Astrophys. 518, A6 (2010). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. X. Liu, L. Wang, J. Wang, and H. Meng, “A three-dimensional point spread function for phase retrieval and deconvolution,” Opt. Express 14, 15392–15405 (2012). [CrossRef] [Google Scholar]
  11. P. Riaud, D. Mawet, and A. Magette, “Nijboer-Zernike phase retrieval for high contrast imaging,” Astron. Astrophys. 545, A150 (2012). [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, “Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system,” J. Opt. Soc. Am. 20, 2281–2292 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  13. V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” Tr. Opt. Inst. 1, 1–36 (1919). [Google Scholar]
  14. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [NASA ADS] [CrossRef] [Google Scholar]
  15. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, S. van Haver, and A. S. van de Nes, “Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system,” J. Opt. Soc. Am. A22, 2635–2650 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. van Haver, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “High-NA aberration retrieval with the Extended Nijboer-Zernike vector diffraction theory,” J. Europ. Opt. Soc. Rap. Public. 1, 06004 (2006). [CrossRef] [Google Scholar]
  17. S. van Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A26, 1221–1234 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  18. D. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A13, 53–64 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  19. J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and S. F. Pereira, “Image formation in a multilayer using the extended Nijboer-Zernike theory,” J. Europ. Opt. Soc. Rap. Public. 4, 09048 (2009). [CrossRef] [Google Scholar]
  20. S. van Haver, The Extended Nijboer-Zernike Diffraction Theory and its Applications (Ph.D. thesis, Delft University of Technology, The Netherlands, 2010). [Google Scholar]
  21. J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Progress in Optics, E. Wolf, ed., 51, 349–468 (Elsevier, Amsterdam, The Netherlands, 2008). [NASA ADS] [CrossRef] [Google Scholar]
  22. O. T. A. Janssen, S. van Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  23. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, United Kingdom, 2010). [Google Scholar]
  24. E. C. Kintner, and R. M. Sillitto, “A new “analytic” method for computing the optical transfer function,” Opt. Acta 23, 607–619 (1976). [CrossRef] [Google Scholar]
  25. A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus,” J. Mod. Opt. 51, 687–703 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  26. J. Boersma, “On the computation of Lommel’s functions of two variables,” Math. Comput. 16, 232–238 (1962). [Google Scholar]
  27. R. M. Aarts, and A. J. E. M. Janssen, “On-axis and far-field sound radiation from resilient flat and dome-shaped radiators,” J. Acoust. Soc. Am. 125, 1444–1455 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  28. W. J. Tango, “The circle polynomials of Zernike and their application in optics,” Appl. Phys. 13, 327–332 (1977). [CrossRef] [Google Scholar]
  29. F. G. Tricomi, Vorlesungen über Orthogonalreihen (Springer, Berlin, 1955). [CrossRef] [Google Scholar]
  30. J. J. M. Braat, and A. J. E. M. Janssen, “Double Zernike expansion of the optical aberration function from its power series expansion,” J. Opt. Soc. Am. A30, 1213–1222 (2013). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.