Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13045 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2013.13045 | |
Published online | 14 July 2013 |
- T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Quantum Elect. 3, 808–830 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- J. Topolancik, S. Chakravarty, P. Bhattacharya, and S. Chakrabarti, “Electrically injected quantum-dot photonic crystal microcavity light sources,” Opt. Lett. 31, 232–234 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett. 96, 1439031–1439034 (2006). [CrossRef] [Google Scholar]
- P. Yeh, Optical waves in layered media (John Wiley & Sons, New York, 1988). [Google Scholar]
- D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [Google Scholar]
- O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012). [Google Scholar]
- O. Hess, and K. L. Tsakmakidis, “Metamaterials with quantum gain,” Science 339, 654–655 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, et al., “Active and tunable metamaterials,” Laser Photonics Rev. 5, 287–307 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. M. Soukoulis, and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105, 127401–127404 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- O. Hess, S. Wuestner, A. Pusch, K. L. Tsakmakidis, and J. M. Hamm, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. T. R. Soc. A 369, 3525–3550 (2011). [CrossRef] [Google Scholar]
- J. M. Hamm, S. Wuestner, K. L. Tsakmakidis, and O. Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107, 167405–167409 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- A. Pusch, S. Wuestner, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch Langevin approach,” ACS Nano 6, 2420–2431 (2012). [CrossRef] [Google Scholar]
- M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. an Veldhoven, et al., “Lasing in metal-insulator-metal sub-wavelength plasmonics waveguides,” Opt. Express 17, 11107–11112 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semi-conductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef] [Google Scholar]
- M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, et al., “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. J. Al-Bader, and M. Imtaar, “Azimuthally Uniform Surface-Plasma Modes in Thin Metallic Cylindrical Shells,” IEEE J. Quantum Elect. 28, 525–533 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- A. V. Maslov, and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE. 6468, 646801–646807 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- V. Krishnamurthy, and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers,” IEEE J. Quantum Elect. 44, 67–74 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- K. Ikeda, Y. Fainman, K. A. Shore, and H. Kawaguchi, “Modified long-range surface plasmon polariton modes for laser nanoresonators.” J. Appl. Phys. 110, 0631061–0631066 (2011). [CrossRef] [Google Scholar]
- K. A. Shore, “Modulation bandwidth of metal-clad semiconductor nano-lasers with cavity-enhanced spontaneous emission,” Electron. Lett. 46, 1688–1689 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Noborosika, J. Motohisa, J. Takeda, M. Inari, Y. Miyoshi, N. Ooike, and T. Fukui, “Growth of GaAs and InGaAs nanowires by utilizing selective area MOVPE,” in Proceedings to 16th Int. Conf. Indium Phospide and Related Materials, (IEEE, Japan, 2004). [Google Scholar]
- Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, M. Paladugu, J. Zou, and A. A. Suvorova, “Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires,” Nano Lett: 6, 599–604 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [Google Scholar]
- G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using low-loss long-range surface plasmon-polariton mode?” New J. Phys. 8, 1–14 (2006). [Google Scholar]
- P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B. 33, 5186–5201 (1986). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.