Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13043
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2013.13043
Published online 09 July 2013
  1. C. Hellier, Handbook of nondestructive Evaluation (McGraw-Hill, New York, 2012). [Google Scholar]
  2. A. Blouin, S. Kruger, D. Levesque, and J. Monchalin, “Applications of Laser-Ultrasonics to the Automotive Industry,” in Proceedings to 17th World Conference on Non Destructive Testing, (WCNDT, Shanghai, 2008). [Google Scholar]
  3. P. Rastogi, and D. Inaudi, Trends in optical Non-destructive testing and inspection (Elsevier, Amsterdam, 2000). [Google Scholar]
  4. N. Rütthard, Rechnerunterstützter Erfahrungsrückfluß in der Prozesskette der Blechteilefertigung und -verarbeitung (Universität Hannover, Hannover, 2001). [Google Scholar]
  5. R. Bergmann, and P. Huke, “Advanced Methods for optical Non-destructive Testing,” in Optical Imaging and Metrology: Advanced Technologies, 393–412 (Wiley, New Jersey, 2012) . [CrossRef] [Google Scholar]
  6. P. Parlevliet, H. Bersee, and A. Beukers, “Residual stresses in thermoplastic composites - A study of the literature - Part II: Experimental techniques,” Compos. Part A-Appl. S. 38, 651–665 (2007). [CrossRef] [Google Scholar]
  7. J. Svanberg, and J. Holmberg, “An experimental investigation on mechanisms for manufactuirng induced shape distortions in homogeneous and balanced laminates,” Compos. Part A-Appl. S. 32, 827–838 (2001). [CrossRef] [Google Scholar]
  8. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. Krishnamurthy, “Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate,” Smart Mater. Struct. 19 (2010). [Google Scholar]
  9. S. John , “Non-Destructive Testing of Fibre-Reinforced Plastics Composites,” Elsevier Applied Science 2, 57–68 (1987) [Google Scholar]
  10. F. Santos, M. Vaz, and J. Monteiro, “A new set-up for pulsed digital shearography applied to defect detection in composite structures,” Opt. Laser Eng. 42, 131–140 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  11. M. Seale, and B. Smith, “Lamb wave propagation in thermally damaged composites,” Rev. Prog. Q. 15A, 261–266 (1996). [Google Scholar]
  12. R. H. Bossi, K. R. Housen, W. B. Shepherd, and M. E. Voss, US Patent 6,848,321 B2 (2005) [Google Scholar]
  13. R. Bossi, K. Housen, and W. Shepherd, “Using Shock Loads to Measure Bonded Joint Strength,” Mater. Eval. 60, 1333–1338, (2002) [Google Scholar]
  14. G. Youssef, C. Moulet, M. Goorsky, and V. Gupta, “Inter-wafer bonding strength characterization by laser-induced shock waves” J. Appl. Phys. 111, 094902 (2012) [NASA ADS] [CrossRef] [Google Scholar]
  15. K. Boving, NDE Handbook (Butterworths, London, 2001). [Google Scholar]
  16. G. Udupa, W. Jun, and K. Bryan, “A combined fiber optic digital shearography and holography system for defect inspection in Siwafers,” Proc. SPIE 5852, (2005) [Google Scholar]
  17. G. Udupa, B. Ngoi, H. Goh, and M. Yusoff, “Defect detection in unpolished Si wafers by digital shearography,” Meas. Sci. Technol. 15, 35–43 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  18. J. Monchalin, C. Neron, J. Bussiere, P. Bouchard, C. Padioleau, R. Heon, M. Choquet, J. Aussel, G. Durou, and J. Nilson, “Laser-ultrasonics: from the laboratory to the shop floor,” Adv. Perform. Mater. 5, 7–23 (1998). [CrossRef] [Google Scholar]
  19. O. Focke, A. Hildebrand, C. Kopylow, and M. Calomfirescu, “Inspection of lamb waves in carbon fiber composites using shearographic interferometry,” Proc. SPIE 6934, (2008) [Google Scholar]
  20. P. Huke, O. Focke, C. Falldorf, C. von Kopylow, and R. Bergmann, “Contactless Defect Detection using Optical Methods for Non Destructive Testing,” in Proceedings of the 2nd Symposium on NdT in Aerospace (DGZfP, Hamburg, 2011). [Google Scholar]
  21. S. Sundin, D. Artymowicz, “Direct measurement of grain size in low-carbon steels using the laser ultrasonic technique,” Metall. Mater. Trans. A 33A, 687–691 (2002). [CrossRef] [Google Scholar]
  22. E. Savio, L. De Chiffre, and R. Schmitt, “Metrology of freeform shaped parts,” CIRP Ann.-Manuf. Techn. 56, 810–835 (2007). [CrossRef] [Google Scholar]
  23. F. Chen, G. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  24. F. Charrière, J. Kühn, T. Colomb, F. Monfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Optics 45, 829–835 (2006). [CrossRef] [Google Scholar]
  25. IAEA, Handbook on non-destructive testing of concrete structures (CRC Press, Boca Raton, 2002). [Google Scholar]
  26. R. Bergmann, T. Bothe, C. Falldorf, P. Huke, M. Kalms, and C. von Kopylow, “Optical metrology and optical non-destructive testing from the perspective of objectcharacteristics,” Proc. SPIE 7791, 1–15 (2010) [Google Scholar]
  27. W. Osten, “Digital Image Processing for Optical Metrology” in Springer Handbook of Experimental Solid Mechanics, Ed. Sharpe, 481–563 (Springer, Berlin, 2008). [CrossRef] [Google Scholar]
  28. A. Moura, A. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  29. C. Falldorf, S. Osten, C. Kopylow, and W. Jüptner, “Shearing interferometer based on the birefringent properties of a spatial light modulator,” Opt. Lett. 34, 2727–2729 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  30. B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3D tracking, LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R (2009) [NASA ADS] [CrossRef] [Google Scholar]
  31. P. Maldaque, Nondestructive evaluation of Materials by Infrared Thermography (Springer Verlag, Berlin, 1995). [Google Scholar]
  32. W. Osten, W. Jüptner, and U. Mieth, “Knowledge based evaluation of fringe patterns for automatic fault detection,” SPIE Interferometry, 256–268 (1993). [Google Scholar]
  33. W. Osten, F. Elandalousi, and W. Jüptner, “Recognition by synthesis - a new approach for the recognition of material faults in HNDE,” Proc. SPIE 2861, 220–224 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  34. C. Furlong, and J. Pryputniewicz, “Hybrid, experimental and computational, investigation of mechanical components,” Proc. SPIE 2861, 13–24 (1996). [CrossRef] [Google Scholar]
  35. K. Telschow, V. Deason, R. Schley, and S. Watson, “Imaging of Lamb Waves in Plates for Quantitative Determination of Anisotropy Using Photorefractive Dynamic Holography,” Rev. Prog. Q. 18 (1999). [Google Scholar]
  36. P. Hess, and A. Lomonosov, “Solitary surface acoustic waves and bulk solitons in nanosecond and picoseconds laser ultrasonics,” Ultrasonics 50, 167–171 (2010). [CrossRef] [Google Scholar]
  37. P. Huke, S. Herrmann, C. Falldorf, and R. Klattenhoff, “Hilfreiche Blicke unter die Oberfläche,” Restauro 8, 28–32 (2012). [Google Scholar]
  38. P. Maldaque, Nondestructive evaluation of Materials by Infrared Thermography (Springer Verlag, Berlin, 1995). [Google Scholar]
  39. A. Dillenz, “Ultraschall Burst-Phasen-Thermografie,” MP Material Testing 43, 1–2 (2001). [CrossRef] [Google Scholar]
  40. C. Zöcke, Quantitative analysis of defects in composite material by means of optical lockin thermography (Universität des Saarlandes and Universitä Paul-Verlaine Mertz, Saarbrücken, 2009). [Google Scholar]
  41. G. Riegert, Induktions-Lockin-Thermografie ein neues Verfahren zur zerstörungsfreien Prüfung (Institut für Kunststofftechnik der Universität Stuttgart, Stuttgart, 2007). [Google Scholar]
  42. C. von Kopylow, O. Focke, and M. Kalms, “Laser Ultrasound - A flexible Tool for the Inspection of complex CFK Components and Welded Seams,” Proc. SPIE 6616, 66163J, (2007). [NASA ADS] [CrossRef] [Google Scholar]
  43. C. Scruby, and L. Drain, Laser Ultrasonics:Techniques and Application (Inst. of Physics Pub., Bristol, 1990). [Google Scholar]
  44. P. Zhang, C. Ying, and J. Shen, “Directivity patterns of laser thermoelastically generated ultra-sound in metal with consideration of thermal conductivity,” Ultrasonics 35, 233–240 (1997). [Google Scholar]
  45. M. Dubois, P. Lorraine, B. Venchiarutti, A. Bauco, and R. Filkins, “Optimization of temporal and optical penetration depth for laser-generation of ultrasound in polymer-matrix composites,” Rev. Prog. Q., 287–294 (2000). [Google Scholar]
  46. G. Shi, C. Chen, J. Lin, X. Xie, and X. Chen, “Narrowband Ultrasonic Detection with High Range Resolution: Separating Echoes via Compressed Sensing and Singular Value Decomposition,” IEEE T. Ultrason. Ferr. 59, 10 (2012). [Google Scholar]
  47. T. Stepinski, and M. Jonsson, “Narrowband ultrasonic spectroscopy for NDE of layered structures,” in Proceedings of 16th World Congress of NDT (ABENDE, BINDT, Munich, 2004). [Google Scholar]
  48. T. Stratoudaki, J. Hernandez, M. Clark, and M. Somekh, “Cheap optical transducers (CHOTs) for narrowband ultrasonic applications,” Meas. Sci. Technol. 18, 843–851 (2007). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.